
DEPARTMENT OF TRANSPORTATION

STATE OF GEORGIA

TRAFFIC ENGINEERING STUDY

February 2020

PRIMARY ROUTE: State Route 53 / Hog Mountain Road

SECONDARY ROUTE: Malcom Bridge Road / Rays Church Road

GDOT DISTRICT: 1

CONGRESSIONAL DISTRICT: 10

COUNTY: Oconee

CITY: Bogart

PREPARED BY:

TABLE OF CONTENTS

Introduction
Project Location
Reason for Investigation
Location Description
Existing Conditions/Field Visit
Traffic Volume History
Existing Traffic Control7
Adjacent Signalized Intersections7
Vehicular Speeds7
Sight Distance
Pedestrian Movements7
Other Modes of Transportation Present7
Planned Projects Adjacent to the Study Area7
Parking7
Crash History
Existing Safety Measures9
Safety Issues11
Safety Issue 1: Limited Sight Distance on Malcom Bridge Road approach
Safety Issue 2: No signage clarifying that cross traffic does not stop
Operational Analysis
Capacity Analysis
Delay12
Traffic Signal Warrant Analysis
Roundabout Evaluation14
Environmental Screening16
Alternative and Countermeasure Evaluation16
Intersection Control Evaluation16
Potential Safety Alternatives and Countermeasures16
Safety Impact of Potential Alternatives and Countermeasures17
Operational Impact of Potential Alternatives and Countermeasures18
Benefit/Cost Analysis
Conclusion19
Recommendations
Appendices21
Appendix A: Safety Risk Matrix Background22

Appendix B: Planning Level Capacity Analysis	23
Appendix C: Collision Diagrams	24
Appendix D: Turning Movement Count Summary	28
Appendix E: Existing Conditions Analysis – Synchro Reports	29
Appendix F: Roundabout Analysis (Build & Design Years) – GDOT Tool (v4.1)	35
Appendix G: Roundabout Analysis (Build & Design Years) – SIDRA 7	
Appendix H: Traffic Signal Warrant Analyses	43
Appendix I: Projected Turning Movement Diagrams	49
Appendix J: Intersection Control Evaluation (ICE)	52
Appendix K: Right-Of-Way Information	55
Appendix L: Environmental Screening	57
Appendix M: Utility Risks	58
Appendix N: Important Documents/Other Risks	59
Appendix O: Proposed Conceptual Layout	62

INTRODUCTION

Highway safety improvement projects are intended to increase safety performance by minimizing or eliminating risk to roadway users. Identification of locations within a highway system that present potential higher risk to roadway users is a critical component of achieving the Georgia Department of Transportation's (GDOT) ultimate goal of zero fatalities and injuries on Georgia's roadways. The unsignalized intersection located at State Route (SR) 53 and Malcom Bridge Road/Rays Church Road represents one such opportunity, particularly due to crash frequency and operational concerns. In order to improve safety, mobility, and non-motorized road user connectivity, GDOT commissioned Atkins to complete this traffic engineering study.

Project Location

The identified intersection is located in central Oconee County (**Figure 1**), where SR 53 intersects Malcom Bridge Road/Rays Church Road, southwest of the city of Athens, Georgia.

Reason for Investigation

This intersection is being investigated due to its crash history and reports of drivers failing to obey the current minor stop control condition.

LOCATION DESCRIPTION

The study location is a two-way minor stopcontrolled intersection. SR 53/Mountain Hog Road and Malcom Bridge Road/Rays Church Road are both two-lane roads. All of the approaches have one lane

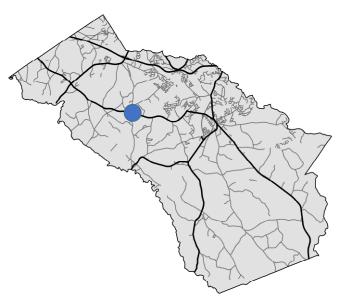


Figure 1. Study Location in Oconee County, GA

for all turning and through movements. The southbound approach is Malcom Bridge Road. The northbound approach is Rays Church Road. The eastbound and westbound approaches are SR 53/Hog Mountain Road. The intersection geometry and approaches have been unchanged for at least the past 20 years. The terrain is generally flat and mostly agricultural in use. Street lighting at the intersection appears to be limited to one light on the southwest corner. The southbound approach contains road-mounted reflectors at the stop sign along the right edge line to improve intersection visibility. The northern leg of Malcom Bridge Road can be used to access the western portion of the city of Athens as well as several local roads, residences and businesses. The eastern leg of Rays Church Road can be used for access to the town of North High Shoals, which is further south near the Oconee/Morgan county line. The western leg of SR 53/Hog Mountain Road can be used for access to several local roads, which is further south near the Oconee/Morgan county line. The western leg of SR 53/Hog Mountain Road can be used for access to several local roads, residences and schools. **Figure 2** shows a map of the surrounding traffic system adjacent to the SR 53 and Malcom Bridge Road/Rays Church Road and **Figure 3** shows the aerial satellite imagery.

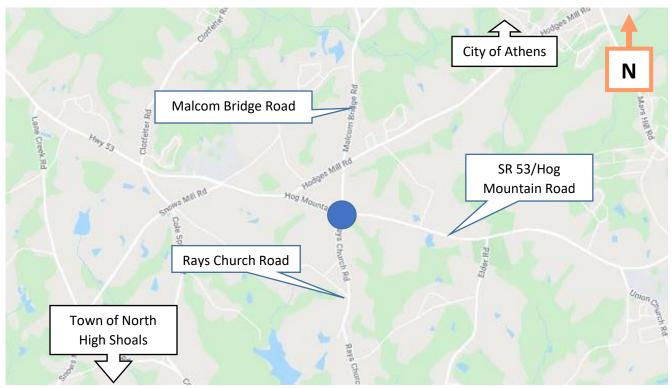


Figure 2. Surrounding Highway Network – SR 53 and Malcom Bridge Road/Rays Church Road

Figure 3. Satellite Imagery – SR 53 and Malcom Bridge Road/Rays Church Road Study Intersection

EXISTING CONDITIONS/FIELD VISIT

Atkins collected a variety of traffic engineering data specific to the project location, including historical traffic and crash data and current traffic counts as well as geometric and other roadway characteristics. Atkins also conducted a site visit on November 13th, 2019, to collect site condition data and observe the project corridor in operation.

Traffic Volume History

Annual average daily traffic (AADT) counts from the online GDOT database were collected specific to SR 53 and Malcom Bridge Road/Rays Church Road from 2014 to 2018. The closest count station along SR 53 is located approximately 1.00 mile east, to the east of Parker Creek Road, where the observed AADT for 2018 was 9,810... The closest count station along Malcom Bridge Road is located approximately 1.71 miles north, just south of Rocky Branch Road, where the estimated AADT for 2018 was 3,380. It should be noted that with this distance between the subject intersection and the count station, the accuracy of the data as it relates to the intersection will vary. There were no count stations present along Rays Church Road south of the intersection within the project intersection scope. **Table 1** summarizes these counts.

Table 1: Historical AADT Volumes Adjacent to SR 53 at Malcom Bridge Road/Rays Church Road Study
Intersection, GDOT Online Database

Year	SR 53 (S	T# 2190145)	Malcom Bridge Road (ST# 219028			
fedi	AADT	Percent Trucks	AADT	Percent Trucks		
2014	8,790	-	3,810	-		
2015	8,730	-	3,650	-		
2016	8,990	7.00%	3,740	7.00%		
2017	9,890	-	3,820	-		
2018	9,810	-	3,880	-		
Average	9,242	7.00%	3,780	7.00%		

Historical traffic volumes along SR 53 and Malcom Bridge Road adjacent to the study intersection have generally increased over the last four years after decreasing between 2014 and 2015. On average, SR 53 served approximately 9,242 vehicles per day (vpd), while Malcom Bridge Road served 3,780 vpd during the five-year study period. Truck volumes represent approximately seven percent of all traffic along SR 53 and Malcom Bridge Road. However, data for this was only present for 2016. To perform subsequent operation analyses, Atkins also performed turning movement counts for the morning (7AM-9AM) and evening (4PM-6PM) peak periods at the study location in August 2019. **Table 2** provides a summary of the morning (AM) and evening (PM) peak hour period. Full details can be found in **Appendix D** and **Appendix E**.

Time Period		Major Route (SR 53)			Minor Route idge Rd/Rays	Church Rd	Entering Intersection
	EB	WB	Total	NB	SB	Total	Total
AM Peak Hour (7:15 to 8:15)	438	367	805	134	98	232	1,037
PM Peak Hour (5:00 to 6:00)	452	472	924	60	150	210	1,134
Total (7-9 AM & 4-6 PM)	1,518	1,490	3,008	379	439	818	3,826

Table 2. Total Entering Volumes at SR 53 at Malcom Bridge Road/Rays Church Road Intersection

The AM peak hour occurs between 7:15 AM and 8:15 AM with a total approach volume of 1,037 vehicles per hour. The PM peak hour occurred between 5:00 PM and 6:00 PM with a total approach volume of 1,134 vehicles per hour. Overall, the SR 53 and Malcom Bridge Road/Rays Church Road intersection served 3,826 daily vehicles during the turning movement counts, roughly 29.4 percent of the combined SR 53 and Malcom Bridge Road volumes for 2018 obtained from the previously listed GDOT count stations. The approach with the greatest contribution to the traffic volumes was the eastbound approach of SR 53 with 1,518 vehicles during the four hours of collected counts.

The SR 53 and Malcom Bridge Road/Rays Church Road approaches all exhibit typical AM and PM peak periods, with a slightly higher volume in the evening. Across the day the volumes go through other fluctuations, but the eastbound approach of SR 53/Hog Mountain Road remains the approach with the highest amount of volume across the day. The westbound approach of SR 53/Hog Mountain Road remains Road has primarily the second highest approach volume. Throughout the day, the southbound approach of Malcom Bridge Road and northbound approach of Rays Church Road have the lowest volumes where compared to the other approaches.

Atkins performed traffic volume forecasts for the study intersection to reflect future projected growth. An expected annual growth rate was developed based upon historical data obtained from the GDOT traffic count locations and population growth estimates for Oconee County. Actual traffic counts collected by GDOT were given preference over the estimated traffic counts provided in the GDOT traffic count database to calculate an average annual historic growth rate. **Table 3** provides annual growth rates from each source; the average is used for estimating the future year traffic growth. The Oconee County population shows a rate of increase of 1.7 percent, while the historical counts show an increase of 2.3 percent. The results from the MACORTS Travel Demand Model showed a 2.0% growth. For operational analyses, a growth rate of 2.0 percent was calculated from these figures.

GDOT Historical Counts	Oconee County Population	Model MPO/GSM	Average
2.3%	1.7%	2.0%	2.0%

Table 3. Estimated Annual Growth in Traffic Volume

Existing Traffic Control

The northbound and southbound approaches to the intersection are currently stop controlled (Flashing beacon warning signs are installed in advance of the stop sign for each approach). The eastbound and westbound approaches are free flow and do not currently have any traffic control.

Adjacent Signalized Intersections

The nearest adjacent signalized intersection is approximately 4.07 miles away at the intersection of SR 53/Hog Mountain Road with Mars Hill Road. This intersection is not within the proximity to the study intersection to be expected to have any functional impact on its operation.

Vehicular Speeds

The posted speed on SR 53 is 55 miles per hour (MPH), both east and west of the study intersection. Malcom Bridge Road to the north of the study intersection is posted at 45 MPH and Rays Church Road to the south of the study intersection is posted at 55 MPH.

Sight Distance

On Malcom Bridge Road, sight distance was measured to be 425' looking to the east and 568' looking to the west. On Rays Church Road, sight distance was measured to be 506' looking to the east and 596' looking to the west. Sight distance is limited in each direction by horizontal/vertical curvature in the roadway and trees/vegetation. At 55 MPH on SR 53, the required Stopping Sight Distance would be 495 feet and the required Intersection Sight Distance would be 610 feet. Under these requirements, the sight distance between the Malcom Bridge Road southbound approach and the SR 53 westbound approach fails to meet Stopping Sight Distance.

Pedestrian Movements

The study intersection and adjacent unsignalized intersections do not currently have pedestrian facilities. During the field visit, there were no pedestrians or bicyclists spotted within the area of the subject intersection. It should also be noted that due to the rural nature around the intersection as well as much of the surrounding right-of-way belonging to the state, pedestrian generators are also limited.

Other Modes of Transportation Present

GDOT vehicle classification count data indicates that trucks accounted for approximately 7.0 percent of the total vehicular volume through the subject intersection.

Planned Projects Adjacent to the Study Area

There were no planned projects that could be identified from GeoPi adjacent to the study location.

Parking

There is no on-street parking along any of the roadways involved in the subject intersection within the study location. There is one parking lot at the northwest quadrant of the intersection that appears to be used for an HVAC contractor facility.

CRASH HISTORY

Atkins collected historical traffic crash data from the most recent five-year period (7/1/2014 – 7/1/2019) from the Georgia Electronic Accident Reporting System to perform a comprehensive safety analysis of the study intersection. **Table 4** provides a summary of the historical traffic crash data, including fatal, injury, and property damage only (PDO) crashes, specific to the SR 53 and Malcom Bridge Road/Rays Church Road intersection. Entering traffic volumes were estimated based upon traffic counts collected by Atkins, and historical crash rates are provided in crashes per one million entering vehicles.

Table 4. Summary of Traffic Crash Data at SR 53 at Malcom Bridge Road/Rays Church Road (2014-2019)

Entering Traffic Volumes Traffic Crashes							Tr	affic C	rash Ra	ates*				
Major	Minor	Total	K	А	В	С	0	Total	K	А	В	С	0	Total
9,242	3,780	13,022	0	3	15	3	22	43	0.00	0.13	0.63	0.13	0.93	1.81

*Traffic crashes per one million entering vehicles

In total, 43 crashes occurred at the study intersection during the five-year period, including 21 injury crashes where three resulted in severe injuries. There were no fatal crashes at the study intersection during the five-year period. **Figure 4** shows the locations for each of these crashes.

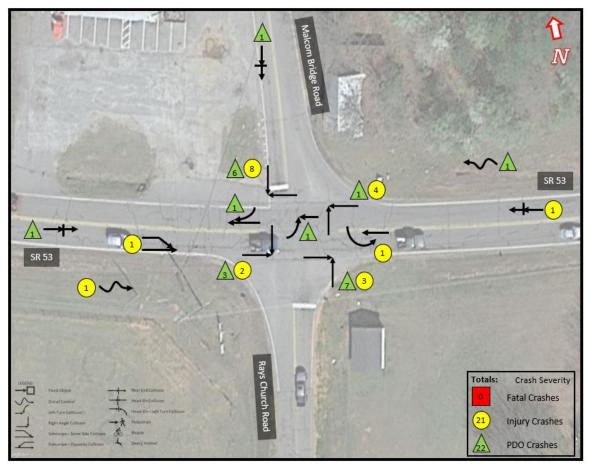


Figure 4. Collison Diagram - SR 53 at Malcom Bridge Road/Rays Church Road

The primary crash type at the intersection were angle type crashes making up 76.7% (33 of the 43) of the total crashes. Many of these angle crashes can likely be attributed to the limited sight distance between the quadrants. From those 33 angle crashes, 14 (42.4%) occurred involving vehicles from the southbound and westbound approaches. The other prevalent form of angle crash involved vehicles from the northbound and eastbound approaches and included 9 (27.3%) of the 33 angle crashes. The remaining forms of angle crashes involved vehicles from the southbound and eastbound approaches at 5 (15.2%) and from the northbound and westbound approaches at 5 (15.2%). The second most common crash type was rear ends

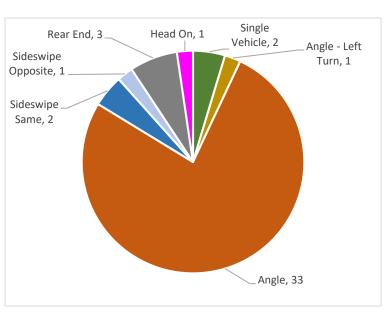


Figure 5. Distribution of Crash Types

making up 7.0% (3 of the 43) of the intersection's crashes. Of the three rear ends, all three occurred on a different approach including the southbound, eastbound, and westbound approaches. From all crash types, 51.2% (23 of 43) involved a vehicle from the southbound approach on Malcom Bridge Road. A collision diagram for the subject intersection is provided in **Appendix C** of this report.

EXISTING SAFETY MEASURES

GDOT and local agencies previously implemented several measures to improve safety performance at this location, including:

• Dual Indicated STOP signs

Figure 6. Dual Indicated STOP Signs

• Single Indicated STOP Ahead (W3-1) warning signs with flashing beacons

Figure 7. Single Indicated STOP Ahead Warning Sign With Flashing Beacons

• STOP AHEAD pavement markings

Figure 8. STOP AHEAD Pavement Markings

• Transverse Rumble strips

Figure 9. Transverse Rumble Strips

SAFETY ISSUES

To develop appropriate engineering countermeasures and recommendations for safety improvements, Atkins identified specific safety issues present at this location based upon the analysis of historical crash data and a site visit. Background related to the typical safety risk matrix is provided in **Appendix A**.

Safety Issue 1: Limited Sight Distance on Malcom Bridge Road approach

It was discussed briefly in the Crash History that 51.2% (23 of 43) of the intersection's crashes involved the southbound approach. This is in part due to the limited sight distance at this approach, especially on the northeast quadrant. There is a significant amount of dense vegetation and an abandoned building on this corner that limits visibility to the east. In addition, the eastern approach curves towards the north back behind the line of vegetation. This in combination with the fact that the eastern approach is coming down from a small hill significantly limits visibility in this direction. As stated above, the measured sight distance is 425 feet from Malcom Bridge Road looking east, 568 feet from Malcom Bridge Road looking west, 506 feet from Rays Church Road looking west.

Expected Crash Types:Angle, Angle – Left TurnExpected Frequency:OccasionalExpected Severity:HighRisk:D

Figure 10. Views of SR 53

Safety Issue 2: No signage clarifying that cross traffic does not stop

While most of the angle crashes seemed to indicate drivers either unable to see crossing traffic due to sight distance constraints or a failure to check for crossing traffic, one trend was identified in three separate crashes where driver stated that they did not realize that the intersection was not an all-way stop-controlled intersection. This was typically the reason given for crashes occurring from the northern and southern approaches. The stop signs at the northern and southern approaches do not have any additional signage indicating that the intersection is only two-way stop-controlled or that cross traffic does not stop.

Expected Crash Types:Angle, Angle – Left TurnExpected Frequency:RareExpected Severity:HighRisk:B

OPERATIONAL ANALYSIS

Capacity Analysis

Appendix B provides the background for a planning level capacity analysis procedure. The acceptable AADT for a two-lane road using this methodology is 13,300. AADT values on SR 53 were 9,242 vpd and on Malcom Bridge Road/Rays Church Road 3,780 vpd. The values obtained from the count stations were also 9,810 vpd on SR 53 and 3,880 vpd on Malcom Bridge Road/Rays Church Road for 2018. None of these values exceeds the value of 13,300 vpd and so all the roadways of the subject intersection are to currently be considered operating under capacity.

Delay

Atkins conducted a capacity analysis for the subject intersection using the traffic operations software, Synchro, version 9 and the 2010 Highway Capacity Manual (HCM).

The analysis for the subject intersection assumes that a level of service (LOS) D or better will be considered adequate (or acceptable). LOS worse than D would indicate that an intersection or approach is nearing unacceptable levels of operation and would be unable to accommodate substantial increases in traffic without significant increases in congestion and delay. The subject intersection was analyzed as a two-way stop-controlled intersection. **Table 5** summarizes results from the Synchro model.

Analysis	Peak		Delay (LOS)								
Year	Period	E	В	W	/B	N	В	SB		Ratio	
2010	AM	0.1	-	0.7	-	60.4	(F)	111.4	(F)	0.877	
2019	PM	0.2	-	0.2	-	28.2	(D)	105.0	(F)	0.958	
2022	AM	0.1	-	0.7	-	81.3	(F)	213.5	(F)	>1.000	
2022	PM	0.2	-	0.2	-	33.7	(D)	167.6	(F)	>1.000	
2042	AM	0.1	-	0.8	-	>999.9	(F)	>999.9	(F)	>1.000	
2042	PM	0.2	-	0.2	-	>999.9	(F)	>999.9	(F)	>1.000	

Table 5. SR 53 at Malcom Bridge Rd/Rays Church Rd – No-Build Intersection LOS Summary (HCM: TWSC)

The southbound approach of Malcom Bridge Road in the AM hours experiences the highest levels of delay, currently over 111 seconds/vehicle. If all delays are expected to increase then the greatest delay by the design

year of 2042 would be over 1,000 seconds on the same southbound approach in the AM hours. This is true for the northbound and southbound approaches in both the AM and PM hours as well. As such, both the northbound and southbound approaches would have the highest levels of delay. This delay would give those approaches at worst a LOS F.

One of the countermeasures is to convert the intersection into an all-way stop controlled intersection. The subject intersection was analyzed as an all-way stop-controlled intersection for the analysis. **Table 6** summarizes results from the Synchro model.

Analysis	Peak		Delay (LOS)							
Year	Period	E	В	W	/B	N	В	S	В	Ratio
2022	AM	39.9	(E)	31.9	(D)	15.8	(C)	13.8	(B)	0.886
2022	PM	39.1	(E)	42.6	(E)	12.5	(B)	15.1	(C)	0.910
2042	AM	291.8	(F)	245.6	(F)	35.9	(E)	24.0	(C)	>1.000
2042	PM	263.4	(F)	285.3	(F)	18.8	(C)	28.6	(D)	>1.000

Table 6. SR 53 at Malcom Bridge Rd/Rays Church Rd – No-Build Intersection LOS Summary (HCM: AWSC)

In this scenario, for the design year of 2022 the eastbound approach of SR 53 in the AM hours would experience the highest levels of delay, at 39.9 seconds/vehicle. In the PM hours, the westbound approach of SR 53 would experience the highest levels of delay, at 42.6 seconds/vehicle. If all delays are expected to increase then the greatest delay by the design year of 2042 would be 291.8 seconds/vehicle on the SR 53 eastbound approach in the AM hours. The second greatest delay by design year of 2042 would be 285.3 seconds/vehicle on the SR 53 westbound approach in the PM hours. As such, the southbound approach would have the highest level of delay in the AM and the northbound approach would have the highest levels of delay in the SR 54.

Traffic Signal Warrant Analysis

The Federal Highway Administration's (FHWA) Manual on Uniform Traffic Control Devices (MUTCD), 2009 Edition, chapter on traffic signal warrants states that the analysis of a signal warrant should include factors in the warrant that are applicable to the existing study location operation and safety. Traffic signal warrants 1 and 2 were evaluated with available traffic data. Warrant 3 was not considered as an applicable signal warrant as the MUTCD indicates that this warrant should only be applied in unusual circumstances where a large volume of traffic is discharged over a short period of time. Warrant 7 was also not considered since a trial of alternatives has not already been tested. Furthermore, the subject intersection was analyzed using one lane for the major street approaches and one lane for the minor approaches.

Traffic data for this evaluation reflect a typical weekday of traffic volumes for a 24-hour period during the 2022 build year. A compounding annual growth rate of +0.77 percent was applied to the 12-hour turning movement counts collected in August 28th, 2019. From this evaluation, the studying intersection fails to meet either Warrants 1 or 2 criteria as summarized in **Table 7**.

	MUTCI	O Value	Number of	
Warrant	Major	Minor	Hours Warrant Satisfied	Meet?
1A – 8-Hour (Minimum Vehicular Volume)	500	150	1	No
1B – 8-Hour (Interruption of Continuous Traffic)	750	75	3	No
2 – 4-Hour	Figure 40	C-1 Curve	1	No

Table 7. Warrant 1 and 2 Evaluation Summary – (100% Right Turn Reduction)

The resulting traffic signal warrant analysis reveals that the intersection of SR 53 and Malcom Bridge Road/Rays Church Road fails to satisfy any of the three warrants that were analyzed. This primarily is due to the fact that the minor approaches do not generate enough traffic to meet the minimum amount for the traffic signal warrants. Since signal warrants are not met, the signal alternative will not be carried forward for further evaluation.

Roundabout Evaluation

Atkins also evaluated the feasibility of a roundabout at this location based upon the traffic count data collected as part of this study. Atkins performed analysis procedures for the roundabout using GDOT's Roundabout Analysis Tool (version 4.1). **Appendix G** and **Appendix H** provides the full details on the operational analyses. **Table 8** provides a summary of the operational analysis results. First, the roundabout was evaluated for the build year of 2022 and design year of 2042 traffic assuming a single lane roundabout.

Approach	Measure of Effectiveness		Period A	nalyzed		
Арргоасн	Weasure of Effectiveness	Α	М	PM		
2022 B	Build Year (Single Lane)	GDOT	SIDRA	GDOT	SIDRA	
	V/C Ratio	0.480	0.493	0.480	0.500	
SR 53/Hog Mountain Road	Approach Delay (sec/veh)	9.0	9.3	9.0	9.2	
(Eastbound)	Avg. Queue Length (lane feet)	71.0	108.2	69.0	106.8	
(Eastbouriu)	LOS	А	А	А	А	
	V/C Ratio	0.460	0.485	0.460	0.471	
SR 53/Hog Mountain Road	Approach Delay (sec/veh)	9.0	9.7	8.0	8.1	
(Westbound)	Avg. Queue Length (lane feet)	68.0	108.2	64.0	108.2	
(westbound)	LOS	А	А	А	Α	
Davis Church	V/C Ratio	0.290	0.295	0.120	0.119	
Rays Church Road	Approach Delay (sec/veh)	9.0	8.6	6.0	6.2	
(Northbound)	Avg. Queue Length (lane feet)	32.0	49.9	10.0	18.4	
(Northbound)	LOS	А	А	А	Α	
Malaana Duidaa	V/C Ratio	0.150	0.161	0.230	0.226	
Malcom Bridge Road	Approach Delay (sec/veh)	6.0	6.5	7.0	6.6	
(Southbound)	Avg. Queue Length (lane feet)	15.0	25.8	22.0	35.3	
(Southbound)	LOS	А	А	А	А	
	Intersection Total:	А	А	А	А	

Table 8. Roundabout Intersection LOS Summary – Single Lane (Build Year – 2022)

Annrasch		Period Analyzed						
Approach	Measure of Effectiveness	A	М	P	PM			
2042 D	esign Year (Single Lane)	GDOT	SIDRA	GDOT	SIDRA			
CD 52/11	V/C Ratio	0.76	0.754	0.80	0.783			
SR 53/Hog Mountain Road	Approach Delay (sec/veh)	18	17.5	20	19.1			
	Avg. Queue Length (lane feet)	207	287.1	223	313.9			
(Eastbound)	LOS	С	С	С	С			
	V/C Ratio	0.77	0.780	0.70	0.695			
SR 53/Hog Mountain Road	Approach Delay (sec/veh)	20	20.6	14	13.1			
(Westbound)	Avg. Queue Length (lane feet)	213	327.3	161	225.6			
(westbound)	LOS	С	С	В	В			
David Channel	V/C Ratio	0.59	0.636	0.24	0.265			
Rays Church	Approach Delay (sec/veh)	19	22.1	10	11.5			
Road (Northbound)	Avg. Queue Length (lane feet)	100	173.4	24	50.3			
(Northbound)	LOS	С	С	В	В			
Malaana Duidaa	V/C Ratio	0.30	0.320	0.45	0.437			
Malcom Bridge	Approach Delay (sec/veh)	10	11.0	12	11.7			
Road	Avg. Queue Length (lane feet)	34	61.8	59	88.0			
(Southbound)	LOS	А	В	В	В			
	Intersection Total:	С	С	С	С			

Table 9. Roundabout Intersection LOS Summary – Single Lane (Design Year – 2042)

Under the GDOT tool, the single lane roundabout should operate at a LOS A when evaluated for to the design year of 2022. The SIDRA analysis showed similar results with the single lane roundabout operating at a LOS A when evaluated for the design year of 2022. However, the GDOT tool results show the single lane roundabout operating at a LOS C for the design year of 2042. The SIDRA analysis also shows the single lane roundabout operating at a LOS C for the design year of 2042. Overall the single lane roundabout would perform with little to no delays throughout the day in design year 2022 but would perform with increased delay throughout the day in design year 2022 but would operate above a LOS D which is adequate for the intersection.

ENVIRONMENTAL SCREENING

Currently there are buildings/structures in three of the four quadrants of the intersection. The structures in the northeast and southeast quadrants have been identified as potential historical resources. However, the structure in the northeast quadrant is not anticipated to be considered eligible by the State Historic Preservation Office (SHPO). Further investigation of these properties would be completed during the Concept phase and an eligibility determination would be made by the SHPO at that time.

ALTERNATIVE AND COUNTERMEASURE EVALUATION

Given the traffic safety data outlined in the preceding sections, Atkins identified several potential design alternatives and countermeasures to improve both safety and operations at the study location. These potential design alternatives and countermeasures were evaluated for further implementation.

Intersection Control Evaluation

Atkins performed a formal intersection control evaluation (ICE), which is included in **Appendix J**. The alternatives evaluated within ICE correspond to the selected safety alternatives and recommendations that were analyzed as a part of this study. Converting the intersection to a single lane roundabout ranked first, while converting the intersection to a single lane roundabout ranked first, while converting the intersection to a single lane roundabout ranked first, while converting the intersection to a solution to a single lane roundabout ranked first, while converting the intersection to a single lane roundabout ranked first, while converting the intersection to a solution to a single lane roundabout ranked first, while converting the intersection to a single lane roundabout ranked first, while converting the intersection to a solution to a single lane roundabout ranked first, while converting the intersection to a single lane roundabout ranked first, while converting the intersection to a solution to a solution to a solution of the selected second. The traffic signal was also included to be evaluated for, but as shown above, it was not included in a ranking due to the intersection failing to meet signal warrants. The factors considered for the potential alternatives are shown and summarized in the following sections.

Potential Safety Alternatives and Countermeasures

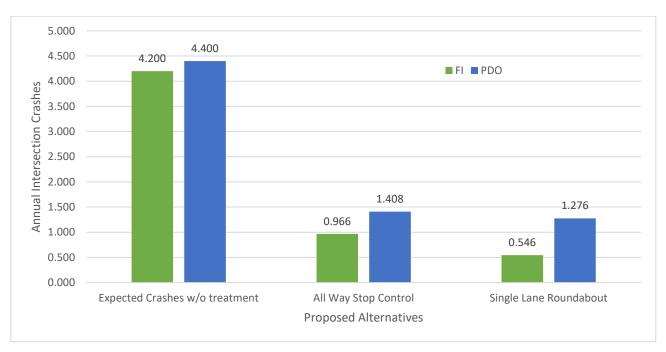
Table 9 summarizes the alternatives and countermeasures selected for further consideration as well as a crash modification factor (CMF) identified from the Highway Safety Manual (HSM), FHWA CMF Clearinghouse, or the GDOT ICE form. While many safety countermeasures are suggested, only those treatments with known safety performance impacts are analyzed.

Countermeasure		CMF (FI Crashes)	CMF (PDO Crashes)	Safety Issue Addressed	CMF Source
1	Convert the existing intersection to an all-way stop-controlled intersection.	0.230	0.320	1, 2	CMF ID: 3127 & 3128
2	Convert the existing intersection to a modern single-lane roundabout.	0.130	0.290	1, 2	CMF ID: 230 & 299

Table 9. Suggested Safety Countermeasures and CMFs for SR 53 at Malcom Bridge Road/Rays Church Road

Conversion of the existing intersection to All-Way Stop-Controlled would address the safety issues by requiring all vehicles to stop at the intersection. It would meet some of the driver's expectations over the intersection being all-way stop-controlled as well as address sight distance issues between the approaches. With the limited sight distance however, drivers may not correctly identify in time the stop control ahead.

Conversion of the existing intersection to a single lane roundabout would also address the safety issues present at the intersection. The roundabout requires provides some speed control because all vehicles must slow down


in order to enter the roundabout. This helps to address some of the sight distance issues by having vehicles slow down on the major approach and requiring vehicles to only need to yield to traffic already in the roundabout. Addressing the relatively higher number of angle crashes, the roundabout's configuration reduces the number of vehicle conflicts and alters their angle to help reduce the severity of crashes that might still occur.

Safety Impact of Potential Alternatives and Countermeasures

While the suggested countermeasures are proven safety treatments that have been shown in prior research to reduce traffic crashes, not all treatments may be feasible or cost-effective at this location based upon further study. Therefore, it is important to consider several combinations of the evaluated treatments that may be selected for implementation. **Table 10** summarizes the estimated impacts on expected annual crash frequencies for various safety treatment combinations.

Safety Countermeasure Combination	Combined CMFs		Expected Crashes without Treatment			l Crashes eatment	Annual Reduction	
Combination	FI	PDO	FI	PDO	FI	PDO	FI	PDO
Convert the existing intersection to an all-way stop-controlled intersection	0.230	0.320	4.200	4.400	0.966	1.408	3.234	2.992
Convert the existing intersection to a modern single-lane roundabout.	0.130	0.290	4.200	4.400	0.546	1.276	3.654	3.124

Table 10. Annual Safety Impact of Proposed Safety Countermeasures

Figure 11. Annual Safety Impact of Proposed Alternatives and Countermeasures

All potential scenarios represent an improvement over the existing condition. However, the implementation of a single-lane roundabout offers noticeably improved safety performance over the other alternatives.

Additional operational analysis is required to determine the operational performance of these alternatives when compared to one another.

Operational Impact of Potential Alternatives and Countermeasures

Table 11 provides a summary of the operational impacts among the potential alternatives. Of these alternatives, the single lane roundabout was evaluated to produce the highest amount of operational improvement at the study intersection.

Alternative	Conflict	Peak		Max V/C				
Alternative	Points	Period	EB WB		NB	SB	Overall	Ratio
Existing	32	AM	0.1 (-)	0.8 (-)	>999 (F)	>999 (F)	>999 (F)*	>1.00
Intersection	52	PM	0.2 (-)	0.2 (-)	>999 (F)	>999 (F)	>999 (F)*	>1.00
AWSC	32	AM	291.8 (F)	245.6 (F)	35.9 (E)	24.0 (C)	208.8 (F)	>1.00
Intersection	52	PM	263.4 (F)	285.3 (F)	18.8 (C)	28.6 (D)	223.2 (F)	>1.00
Single Lane	o	AM	17.5 (C)	20.6 (C)	22.1 (C)	11.0 (B)	18.8 (C)	0.78
Roundabout	8	PM	19.1 (C)	13.1 (B)	11.5 (B)	11.7 (B)	15.1 (C)	0.78

Table 11. Year 2042 Operational Analysis Results

*The HCM states the following for intersection LOS: (a) major-street through vehicles are assumed to experience zero delay; (b) the disproportionate number of major-street through vehicles at a typical TWSC intersection skews the weighted average of all movements, resulting in a very low overall average delay for all vehicles; and (c) the resulting low delay can mask LOS deficiencies for minor movements. Therefore, the critical movement was reported as the overall LOS and delay for TWSC scenarios.

BENEFIT/COST ANALYSIS

Alternatives

Single Lane Roundabout

Benefits

- Eliminates conflict points associated with angle collisions
- Incorporates Pedestrian Safety
- Improved Traffic Operations
- Slows mainline speeds at the intersection

Estimated Cost

PE	\$700,000.00
UTL	\$150,000.00
ROW	\$400,000.00
CST	<u>\$2,000,000.00</u>
Total	\$3,250,000.00

Concerns

- Potential Historic properties in the Northeast and Southeast quadrants
- Likely to displace business in the Northwest quadrant

Estimated Safety Benefit Cost

FHWA crash modification factors suggest converting the intersection from a TWSC to a single lane roundabout is expected to result in an 87% (ID:230) reduction in injury crashes and a 71% (ID:233) reduction in PDO crashes for all crash types.

Safety B/C = 13.62

All Way Stop Control								
<u>Benefits</u>		Concerns						
 Slows mainline speeds at the intersection Inexpensive 		 Maintains maneuvers with a documented injury angle crash pattern Operates at a LOS F during the design year 						
Estimated	d Cost	Estimated Safety Benefit Cost						
PE UTL ROW <u>CST</u> Total	\$10,000.00 \$0.00 \$0.00 <u>\$50,000.00</u> \$60,000.00	FHWA crash modification factors suggest converting the intersection from a TWSC to an AWSC is expected to result in an 77% (ID:3128) reduction in injury crashes and a 48% (ID:315) reduction in PDO crashes for all crash types.						
		Safety B/C = 97.08						

CONCLUSION

The previous sections of this report demonstrate that the proposed alternatives and countermeasures will improve operations compared to the no-build condition, and have been proven in prior research to improve traffic safety. Therefore, GDOT should consider the recommended safety countermeasures and treatments presented in **Table 12** for implementation.

Table 12. Suggested Safety Countermeasures for SR 53 at Malcom Bridge Road/Rays Church Road Study
Intersection

No.	Countermeasure	Approximate Implementation Timeline	Safety Issue Addressed
1	Install W4-4p (Cross Traffic Does Not Stop) signs below the stop signs on the Malcom Bridge Road and Rays Church Road approaches.	Short	2
2	Convert the existing intersection to a modern single-lane roundabout.	Long	1, 2

DATE 2/21/2020

DATE

RECOMMENDATIONS

Based on the information presented in this report, the Atkins team proposes both short-term and long-term improvements to the SR 53 Malcom Bridge Road/Rays Church Road intersection. The short-term improvements include installing W4-4p (Cross Traffic Does Not Stop) signs below the existing stop signs. The long-term improvement is to convert the intersection into a modern single lane roundabout. A roundabout decreases the number of conflict points and helps provide a decrease in vehicular speeds. Therefore, a reduction in both severity and frequency of crashes at the intersection is expected. Since the roundabout can immediately address all the safety issues listed at the intersection and provide operational benefits as well, the Atkins team recommends that the Department move forward with a project to convert the intersection into a modern single-lane roundabout when resources become available. A conceptual layout of the proposed roundabout is provided in **Appendix O**.

ravis Brewer

RECOMMENDED BY:

Travis Brewer, PE Atkins Project Manager

RECOMMENDED BY: _____

Samuel Harris, PE State Safety Engineer

RECOMMENDED BY: _____

DATE _____

Jason Dykes, PE District Traffic Engineer

APPENDICES

- Appendix A: Safety Risk Matrix Background
- Appendix B: Planning Level Capacity Analysis
- Appendix C: Collision Diagram
- Appendix D: Turning Movement Count Summary
- Appendix E: Existing Conditions Analysis Synchro Reports
- Appendix F: Roundabout Analysis (Build & Design Years) GDOT Tool (v4.1)
- Appendix G: Roundabout Analysis (Build & Design Years) SIDRA 7
- Appendix H: Traffic Signal Warrant Analyses
- Appendix I: Projected Turning Movement Diagrams
- Appendix J: Intersection Control Evaluation (ICE)
- Appendix K: Right-Of-Way Information
- Appendix L: Environmental Screening
- Appendix M: Utility Risks
- Appendix N: Important Documents/Other Risks
- Appendix O: Proposed Conceptual Layout

Appendix A: Safety Risk Matrix Background

Estimated		Expected Crash Frequency (from HSM	Frequency	
Exposure	Probability	analysis)	Rating	
High	High	10 on more excelos non veen	Frequent	
Medium	High	10 or more crashes per year		
High	Medium	1 to 0 areaches non vison	Occasional	
Medium	Medium	1 to 9 crashes per year	Occasional	
High	Low	Less than 1 crash per year, but more than 1	Infragment	
Low	Medium	crash every five years	Infrequent	
Medium	Low	Loss than 1 much every five years	Rare	
Low	Low	Less than 1 crash every five years	Kare	

Crash Frequency

Crash Severity

Types of crashes	Expected crash severity	Severity rating
Crashes involving high speeds or heavy vehicles, pedestrians, bicycles or motorcycles	Probable fatality or incapacitating injury	Extreme
Crashes involving medium to high speeds; lane departure, angle, or left-turn crashes	Moderate to severe injury	High
Crashes involving low to medium speeds angle or left- turn crashes or high speeds and rear end or side-swipe crashes	Minor to moderate injury	Moderate
Crashes involving low to medium speeds; rear end or sideswipe crashes	Property damage only or minor injury	Low

Safety Risk Matrix

Frequency Rating	Severity Rating							
	Low	Moderate	High	Extreme				
Frequent	С	D	Е	F				
Occasional	В	С	D	Е				
Infrequent	А	В	С	D				
Rare A		А	В	С				

Appendix B: Planning Level Capacity Analysis

GDOT's design policy manual states that the ideal capacity of a two-lane roadway is 1,700 vehicles per hour (vph) in each direction and 2,000 vph per lane for a multi-lane highway. The manual also states that two lane roadways are generally acceptable only if the design hour volume (DHV) is less than 800 vph in either direction. For the purposes of a "planning level capacity analysis," for two lane roadways, the acceptable DHV of 800 needs to be converted to an acceptable daily volume and compared with GDOT's average AADT counts to determine potential capacity issues. As the 800 vph is in either direction, it represents the directional design hour volume (DDHV). The calculation for DDHV using AADT is as follows:

DDHV = AADT * K * D where:

- K = proportion of the AADT that occurs during the design hour
- D = proportion of the DHV that occurs in the heavier direction of travel

Since the DDHV is known (800 vph), assuming a K and D value allows for the calculation of a target daily volume or AADT in the above formula. Reasonable assumptions for K and D were made where K was assumed to be 0.10 (or 10%) and D was assumed to be 0.60 (or 60%). Using those in conjunction with GDOT's acceptable DDHV, the acceptable daily volume for a two-lane road is computed as follows:

Two lane acceptable daily volume = 800 / (0.10 * 0.60) = 13,333 (13,300 rounded).

COUNTY:

Appendix C: Collision Diagrams

Oconee

Collision Diagram

LOCATION: PERIOD:	Intersection of SR 53 @ 07/01/2014 TO	Malcom Bridge Road/Ra 07/01/2019	ys Church Road		
			Malcom Bridge Road	î N	AND
<u>∧</u> _++ SR 53				SR 53	AND
and a second sec	tan Ment On - Left Turn Culto	Rays Church Road	6	Totals: Crash Severity 1 Fatal Crashes 21 Injury Crashes 22 PDO Crashes	and the second of the second of the

LO	COUNTY: Oconee LOCATION: Intersection of SR 53 @ Malcom Bridge Road/Rays Church Road PERIOD: 07/01/2014 TO 07/01/2019											
No.	Crash Type	Date	Day	Time	PDO	А	В	с	F	Light Cond.	Surface	Accident No.
1	\$	1/10/2018	Wed	21:52:00	0	0	1	0	0	Night	Wet	6549557
2	*	10/5/2018	Fri	16:01:00	1	0	0	0	0	Day	Dry	6902617
3	ſ	3/28/2015	Sat	17:58:00	1	0	0	0	0	Day	Dry	5251865
4		8/22/2015	Sat	11:10:00	1	0	0	0	0	Day	Dry	5453391
5		3/25/2016	Fri	16:38:00	0	0	0	1	0	Day	Dry	5730638
6		10/7/2016	Fri	9:15:00	1	0	0	0	0	Day	Dry	5953381
7		1/4/2017	Wed	8:00:00	0	0	1	0	0	Day	Dry	6067014
8	→	4/27/2017	Thu	7:52:00	1	0	0	0	0	Day	Dry	6317808
9		6/8/2017	Thu	18:44:00	1	0	0	0	0	Day	Dry	6270381
10	•	6/23/2017	Fri	16:40:00	1	0	0	0	0	Day	Dry	6286546
11		7/9/2018	Mon	20:59:00	0	0	1	0	0	Night	Dry	6786036
12		10/26/2018	Fri	15:55:00	1	0	0	0	0	Day	Wet	6935080
13		1/3/2019	Thu	11:14:00	1	0	0	0	0	Day	Wet	7027181
14		4/1/2016	Fri	8:41:00	0	0	1	0	0	Dawn	Wet	5767342
15	~	5/15/2016	Sun	15:10:00	0	0	1	0	0	Day	Dry	5760375
16	Î	12/28/2017	Thu	12:15:00	0	0	1	0	0	Day	Dry	6534043
17	I	2/9/2018	Fri	8:05:00	0	1	0	0	0	Day	Dry	6585806
18		2/6/2019	Wed	14:16:00	1	0	0	0	0	Day	Dry	7074767

LO	UNTY: Oconee CATION: Intersect RIOD: 07/01/20	ion of SR 53 @ Malco 014 TO 07/0	om Bridge 1/2019	Road/Rays Churc		noo		areon.		age noua,	ind yo c	
No.	Crash Type	Date	Day	Time	PDO	Α	в	с	F	Light Cond.	Surface	Accident No.
19		5/23/2015	Sat	16:33:00	1	0	0	0	0	Day	Dry	5304770
20	1	7/5/2016	Tue	20:16:00	0	0	1	0	0	Dusk	Dry	5830988
21	Ļ	3/20/2017	Mon	17:45:00	1	0	0	0	0	Day	Dry	6244803
22	-	11/17/2017	Fri	15:14:00	0	0	1	0	0	Day	Dry	6478039
23		2/21/2018	Wed	8:06:00	1	0	0	0	0	Day	Dry	6675252
24		4/20/2015	Mon	18:04:00	1	0	0	0	0	Day	Dry	5298912
25		4/28/2015	Tue	17:30:00	1	0	0	0	0	Day	Dry	5272514
26		9/12/2015	Sat	11:26:00	1	0	0	0	0	Day	Dry	5480102
27		7/11/2016	Mon	0:00:00	1	0	0	0	0	Day	Dry	5891018
28		1/5/2017	Thu	19:27:00	1	0	0	0	0	Night	Dry	6161506
29		1/16/2017	Mon	8:55:00	0	1	0	0	0	Day	Dry	6088166
30		9/8/2017	Fri	16:23:00	0	0	1	0	0	Day	Dry	6520813
31	↓	4/12/2018	Thu	16:27:00	0	0	1	0	0	Day	Dry	6715107
32		6/23/2018	Sat	12:38:00	0	0	0	1	0	Day	Dry	6770596
33		1/5/2019	Sat	21:11:00	0	0	1	0	0	Night	Dry	7032566
34		1/10/2019	Thu	9:22:00	0	0	1	0	0	Day	Dry	7037840
35		2/19/2019	Tue	16:45:00	0	1	0	0	0	Day	Wet	7098046
36		4/6/2019	Sat	14:20:00	1	0	0	0	0	Day	Dry	7154638
37		4/17/2019	Wed	17:48:00	0	0	1	0	0	Day	Dry	7187866
38	\rightarrow	6/5/2015	Fri	8:31:00	0	0	1	0	0	Day	Dry	5316541

COUNTY: Oconee Intersection of SR 53 @ Malcom Bridge Road/Rays Church Road LOCATION: PERIOD: 07/01/2019 07/01/2014 то No. Crash Type Date Day Time PDO А В С F Light Cond. Surface Accident No. 39 ᆇ 8/24/2017 Thu 8:16:00 1 0 0 0 0 Day Dry 6518853 40 11/6/2018 Tue 11:58:00 0 0 0 1 0 Dry 7060530 Day 3/23/2017 Thu 17:57:00 1 0 0 0 0 Day Dry 6164126 41 9/23/2014 15:53:00 1 0 0 0 0 4993442 42 Tue Day Dry -+--9/26/2017 8:59:00 0 0 0 0 6406472 43 Tue 1 Day Dry

Appendix D: Turning Movement Count Summary

INTERSECT				SR 53 @											1		PROJEC			SR 53 @ N	talcolm Bi	ridge Rd
CONDITION		2		Wedne	sday, A	ugust 28	3, 2019										JOB NO		Ē	Atkins		
CONDITION	*	-															COMP			AUKINS		
	TIME	-	F	SR 53 ASTBOUM	ID	10101010	i si	14	SR 53 VESTBOUI					Church THBOUI		and the second s	nonenene R	- VII.02	olm Bridg UTHBOU			
	TERVAL	U	L	T	R	TOTAL	U	L	T	R	TOTAL	U	L	T	R	TOTAL	U	L	T	R	TOTAL	TOTALS
7:00 AM	- 7:15 AM	0	0	59	5	64	0	0	74	10	84	0	3	11	1	15	0	7	11	0	18	181
7:15 AM 7:30 AM	- 7:30 AM	0	2	83 119	2	87 120	0	3	68 75	11	82 88	0	5	17 41	0	22	0	9 17	11	1	21 24	212 283
7:45 AM	- 8:00 AM	0	1	110	4	115	0	5	73	9	87	0	4	24	3	31	0	17	12	0	29	262
8:00 AM 8:15 AM	- 8:15 AM - 8:30 AM	0	2	104 72	10	116 79	0	19 2	78 55	13	110 65	0	2	22	6 12	30 32	0	9 18	15	0	24 25	280
8:30 AM	- 8:45 AM	0	1	65	2	68	0	2	58	10	70	0	2	14	7	23	0	12	4	0	16	177
8:45 AM 9:00 AM	- 9:00 AM - 9:15 AM	0	0	80 0	1	81	0	3	38	12	53	0	3	11	3	17	0	10 0	10	2	22	173 0
9:15 AM	- 9:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:30 AM 9:45 AM	- 9:45 AM - 10:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00 AM	- 10:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:15 AM 10:30 AM	- 10:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:45 AM	- 11:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM 11:15 AM	- 11:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30 AM	- 11:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45 AM 12:00 PM	- 12:00 PM - 12:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15 PM	- 12:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30 PM 12:45 PM	- 12:45 PM - 1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:00 PM	- 1:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:15 PM 1:30 PM	- 1:30 PM - 1:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:45 PM	- 2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:00 PM	- 2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:15 PM 2:30 PM	 2:30 PM 2:45 PM 	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:45 PM	- 3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM 3:15 PM	- 3:15 PM - 3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:30 PM	- 3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:45 PM 4:00 PM	- 4:00 PM - 4:15 PM	0	0	0 81	0	0	0	0	0	0	0 81	0	0	0	0	0 26	0	0	0	0	0 26	0 218
4:15 PM	- 4:30 PM	0	0	83	1	84	0	8	80	17	105	0	3	13	4	20	0	8	11	1	20	229
4:30 PM 4:45 PM	- 4:45 PM - 5:00 PM	0	0	74 83	6	80	0	8	79 74	17	104 89	0	6	8 20	7	21	0	10 17	19 17	1	30 34	235 241
5:00 PM	- 5:15 PM	0	0	97	3	100	0	2	81	13	96	0	4	9	1	14	0	17	15	0	32	242
5:15 PM 5:30 PM	- 5:30 PM - 5:45 PM	0	4	108 104	4	116 111	0	2	103	25	130 131	0	1	13	1	15	0	24 21	22 13	0	46 36	307 289
5:45 PM	- 6:00 PM	.0	1	124	0	125	0	3	92	20	115	0	4	13	3	20	0	23	13	0	36	296
6:00 PM 6:15 PM	- 6:15 PM - 6:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:30 PM	- 6:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:45 PM	- 7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	OTAL	0	19	1446	53	1518		67	1199	224	1490	(1))))))	52	258	69	379	0	228	204	/	439	3826
GRAND TOTAL		0	19	1446	53	1518	0	67	1199	224	1490	0	52	258	69	379	0	228	204	7	439	3826
				AM PE		R	1999			WEST	7:15	AM	TC			BOUND	9999			SOUTH	BOUND	
				U	L	Т	R	ų iš	U	L	T	R		U	L	T	R	a 6	U	L	Ť	R
TURN VOLUME				0	5	416	17		0	29 36	294 57	44	ŀ	0	16	104	14		0	52	45 8	1
PEAK HOUR FA					_	91	1999			0.						66				0.8	· · ·	
			ĺ	MID-D/	Y PEAK	HOUR					11 0	0 AM	TC		12:0	D PM						
TURN VOLUME	E		Î	U	0	T 0	R		0	L 0	T O	R	Г	0	L O	T 0	R		U O	L	T O	R
APPROACH TO					()				()		t	-	C	1	0.50			()	
PEAK HOUR FA	AC.					00				0.	00					00				0.0	00	
				PM PE/	K HOU							PM	TC		6:00	PM						
TURN VOLUME	E			U 0	9	T 433	R 10		U 0	10	т 381	R 81	Г	0	۱ 9	т 41	R 10		U 0	د 85	т 63	R 2
APPROACH TO	ITAL				45	52				47	12		ļ		6	0				1	50	
PEAK HOUR FA	NC.			usisisi	0.	90				0.	90		Ŀ		0.	75				0.8	52	
INTERSECT	ION :					UNSIGN	ALIZED	3	2	SIGNALIZ	ÉD			ACTUATE	D		PRETIME	D	I		SEMI-ACT	UATED

Appendix E: Existing Conditions Analysis – Synchro Reports 2019 AM

HCM 2010 TWSC 1: Rays Church Rd/Malcolm Bridge Rd & Hog Mountain Rd

12/03/2019

Intersection												
Int Delay, s/veh	20.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4			\$			4	
Traffic Vol, veh/h	5	416	17	29	294	44	16	104	14	52	45	1
Future Vol, veh/h	5	416	17	29	294	44	16	104	14	52	45	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized			None			None	-	-	None	-		None
Storage Length			-						-			
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-		0	
Peak Hour Factor	91	91	91	83	83	83	66	66	66	84	84	84
Heavy Vehicles, %	8	8	8	11	11	11	4	4	4	9	9	9
Mvmt Flow	5	457	19	35	354	53	24	158	21	62	54	1
Major/Minor I	Major1			Major2			Minor1		1	Minor2		
Conflicting Flow All	407	0	0	476	0	0	955	954	467	1017	937	381
Stage 1							477	477		451	451	
Stage 2					-		478	477	-	566	486	
Critical Hdwy	4.18		-	4.21			7.14	6.54	6.24	7.19	6.59	6.29
Critical Hdwy Stg 1							6.14	5.54		6.19	5.59	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.14	5.54	-	6,19	5.59	-
Follow-up Hdwy	2.272			2.299			3.536	4.036	3.336	3.581	4.081	3.381
Pot Cap-1 Maneuver	1120		-	1041			236	257	592	210	258	651
Stage 1	-	-	-		-	-	565	553	-	575	559	
Stage 2		-	-				565	553	-	497	539	
Platoon blocked, %												
Mov Cap-1 Maneuver	1120	-	-	1041	-	-	189	244	592	94	245	651
Mov Cap-2 Maneuver		-			-	-	189	244		94	245	
Stage 1							562	550		572	534	
Stage 2	-	-	-	-	-	-	485	529	-	340	536	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0.7			60.4			111.4		
HCM LOS							F			F		
Minor Lane/Major Mvm	it I	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		251	1120			1041			133			
HCM Lane V/C Ratio		0.809	0.005			0.034			0.877			
HCM Control Delay (s)		60.4	8.2	0		8.6	0		111.4			
HCM Lane LOS		F	A	Ă		A	Ă		F			
HCM 95th %tile Q(veh))	6.2	0	-		0.1	-		5.7			
									2.1			

SR 53 at Malcolm Bridge Rd 09/26/2019 Baseline JRA

2019 PM

HCM 2010 TWSC 1: Rays Church Rd/Malcolm Bridge Rd & Hog Mountain Rd

12/03/2019

Intersection												
Int Delay, s/veh	16.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	9	433	10	10	381	81	9	41	10	85	63	2
Future Vol, veh/h	9	433	10	10	381	81	9	41	10	85	63	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized			None			None			None			None
Storage Length		-	-		-	-	-			-		-
Veh in Median Storage	9,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %		0			0		-	0			0	-
Peak Hour Factor	90	90	90	90	90	90	75	75	75	82	82	82
Heavy Vehicles, %	2	2	2	4	4	4	0	0	0	1	1	1
Mvmt Flow	10	481	11	11	423	90	12	55	13	104	77	2
Major/Minor I	Major1			Major2		1	Minor1			Minor2		
Conflicting Flow All	513	0	0	492	0	0	1037	1042	487	1031	1002	468
Stage 1							507	507		490	490	
Stage 2	-	-			-	-	530	535		541	512	
Critical Hdwy	4.12		-	4.14			7.1	6.5	6.2	7.11	6.51	6.21
Critical Hdwy Stg 1							6.1	5.5		6.11	5.51	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	-	6.11	5.51	-
Follow-up Hdwy	2.218			2.236			3.5	4	3.3	3.509	4.009	3.309
Pot Cap-1 Maneuver	1052			1061			211	232	585	212	243	597
Stage 1	-	-	-	-	-	-	552	543	-	562	550	-
Stage 2	-	-	-		-	-	536	527	-	527	538	-
Platoon blocked, %												
Mov Cap-1 Maneuver	1052	-	-	1061	-	-	154	226	585	165	236	597
Mov Cap-2 Maneuver		-			-	-	154	226	-	165	236	-
Stage 1		-	-		-		545	536	-	555	542	-
Stage 2	-	-	-	-	-	-	451	519	-	456	531	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.2			0.2			28.2			105		
HCM LOS							D			F		
							2					
Minor Lane/Major Mvm	nt I	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		234	1052	-	-	1061	-	-	191			
HCM Lane V/C Ratio		0.342	0.01			0.01						
HCM Control Delay (s)		28.2	8.5	0		8.4	0		105			
HCM Lane LOS		D	A	Ă		A	Ă		F			
HCM 95th %tile Q(veh))	1.4	0	-		0	-		7.8			
rom oour mile at rom		1.1	0			÷.			1.0			

SR 53 at Malcolm Bridge Rd 09/26/2019 Baseline JRA

2022 AM

HCM 2010 TWSC 1: Rays Church Rd/Malcolm Bridge Rd & Hog Mountain Rd

12/03/2019

Intersection												
Int Delay, s/veh	33.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	5	440	20	30	310	45	15	110	15	55	45	1
Future Vol, veh/h	5	440	20	30	310	45	15	110	15	55	45	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized			None			None		-	None	-		None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %		0			0			0	-		0	
Peak Hour Factor	91	91	91	83	83	83	66	66	66	84	84	84
Heavy Vehicles, %	8	8	8	11	11	11	4	4	4	9	9	9
Mvmt Flow	5	484	22	36	373	54	23	167	23	65	54	1
Major/Minor I	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	427	0	0	506	0	0	1005	1004	495	1072	988	400
Stage 1							505	505		472	472	
Stage 2	-			-	-	-	500	499	-	600	516	-
Critical Hdwy	4.18			4.21			7.14	6.54	6.24	7.19	6.59	6.29
Critical Hdwy Stg 1							6.14	5.54		6.19	5.59	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.14	5.54	-	6.19	5.59	-
Follow-up Hdwy	2.272			2.299			3.536	4.036	3.336	3.581	4.081	3.381
Pot Cap-1 Maneuver	1101			1014			218	240	571	192	240	635
Stage 1	-	-	-	-	-	-	546	537	-	560	547	-
Stage 2	-	-			-	-	549	540	-	476	523	-
Platoon blocked, %												
Mov Cap-1 Maneuver	1101	-	-	1014	-	-	171	227	571	71	227	635
Mov Cap-2 Maneuver	-	-	-		-	-	171	227	-	71	227	-
Stage 1							543	534		557	521	
Stage 2	-	-	-	-	-	-	469	515	-	313	520	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0.7			81.3			213.5		
HCM LOS	0.1						F			F		
Minor Lane/Major Mvm	nt I	NBLn1	EBL	EBT	EBR	WBL	WBT	WRR	SBLn1			
Capacity (veh/h)		234	1101	EDI	EDR -	1014	-	TUN	104			
HCM Lane V/C Ratio		0.907	0.005			0.036			1.156			
HCM Control Delay (s)		81.3	8.3	0		8.7	0					
HCM Lane LOS		01.0 F	0.3 A	A		0.7 A	A		213.5 F			
HCM 95th %tile Q(veh)		7.7	0	^		0.1	~		7.8			
How sour whe wiven		1.1	0	-		0.1			1.0			

SR 53 at Malcolm Bridge Rd 09/26/2019 Baseline JRA

2022 PM

HCM 2010 TWSC 1: Rays Church Rd/Malcolm Bridge Rd & Hog Mountain Rd

12/03/2019

Intersection												
Int Delay, s/veh	25.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4.			-			4	
Traffic Vol, veh/h	10	460	10	10	405	85	10	45	10	90	65	1
Future Vol. veh/h	10	460	10	10	405	85	10	45	10	90	65	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None		-	None		-	None			None
Storage Length	-	-	-	-	-	-	-	-	-		-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-		0			0	-
Peak Hour Factor	90	90	90	90	90	90	75	75	75	82	82	82
Heavy Vehicles, %	2	2	2	4	4	4	0	0	0	1	1	1
Mvmt Flow	11	511	11	11	450	94	13	60	13	110	79	1
Major/Minor	Major1		1	Major2		1	Vinor1		1	Minor2		
Conflicting Flow All	544	0	0	522	0	0	1098	1105	517	1094	1063	497
Stage 1							539	539	-	519	519	
Stage 2		-		-	-	-	559	566	-	575	544	-
Critical Hdwy	4.12			4.14			7.1	6.5	6.2	7.11	6.51	6.21
Critical Hdwy Stg 1	-	-		-	-		6.1	5.5	-	6.11	5.51	-
Critical Hdwy Stg 2		-			-		6.1	5.5	-	6.11	5.51	
Follow-up Hdwy	2.218	-		2.236	-		3.5	4	3.3	3.509		3.309
Pot Cap-1 Maneuver	1025	-	-	1034	-	-	192	213	562	192	224	575
Stage 1		-					530	525	-	542	534	
Stage 2	-	-	-	-	-	-	517	511	-	505	521	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1025	-	-	1034	-	-	134	207	562	142	217	575
Mov Cap-2 Maneuver		-			-		134	207	-	142	217	-
Stage 1		-			-		522	517	-	534	526	
Stage 2	-	-	-	-	-	-	432	503	-	429	513	-
, i i i i i i i i i i i i i i i i i i i												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.2			0.2			33.7			167.6		
HCM LOS							D			F		
Minor Lane/Major Mvn	nt I	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		210	1025	-	-	1034	-	-	167			
HCM Lane V/C Ratio		0.413	0.011			0.011			1.139			
HCM Control Delay (s))	33.7	8.6	0	-	8.5	0	-	167.6			
HCM Lane LOS		D	A	A	-	A	A		F			
HCM 95th %tile Q(veh)	1.9	0	-	-	0	-	-	10			

SR 53 at Malcolm Bridge Rd 09/26/2019 Baseline JRA

2042 AM

HCM 2010 TWSC 1: Rays Church Rd/Malcolm Bridge Rd & Hog Mountain Rd

12/03/2019

Intersection	000.0											
Int Delay, s/veh	202.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- 4+			- 4+			- 💠			- ++	
Traffic Vol, veh/h	5	655	25	45	465	70	25	165	20	80	70	1
Future Vol, veh/h	5	655	25	45	465	70	25	165	20	80	70	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	83	83	83	66	66	66	84	84	84
Heavy Vehicles, %	8	8	8	11	11	11	4	4	4	9	9	9
Mvmt Flow	5	720	27	54	560	84	38	250	30	95	83	1
Major/Minor I	Major1			Vajor2			Minor1			Vinor2		
Conflicting Flow All	644	0	0	747	0	0	1496	1496	734	1594	1467	602
Stage 1	044	-		141		-	744	744	104	710	710	002
	-		-	-		-	752	752	-	884	757	
Stage 2 Critical Hdwy	4.18	-	-	4.21	-		7.14	6.54	6.24	7.19	6.59	6.29
Critical Howy Stg 1	4.10		-	9.21			6,14	5.54	0.24	6,19	5.59	0.29
Critical Holwy Stg 2							6.14	5.54		6.19	5.59	
	2.272	-		2.299	-	-	3.536		3,336	3.581	4.081	3.381
Follow-up Hdwy Pot Cap-1 Maneuver	913		-	822		-	100	~ 121	417	~ 83	123	487
Stage 1	910			022			403	419	417	414	426	40/
Stage 2							399	415		331	406	
Platoon blocked, %	-			-			088	410	-	001	400	-
Mov Cap-1 Maneuver	913			822			~ 34	~ 107	417		109	487
Mov Cap-2 Maneuver							~ 34	~ 107	417		109	407
Stage 1	-						399	415	-	410	382	
Stage 2							279	372		121	402	
Obye 2			-		-		213	512		121	402	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0.8		\$ 1	1239.2					
HCM LOS							F			-		
Minor Lane/Major Mvm	1	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBL n1			
		90	913	201		822		That's i	o den 1			
Capacity (veh/h) HCM Lane V/C Ratio			0.006			0.066						
HCM Control Delay (s)	0	1239.2	9	0		9.7	0		-			
HCM Lane LOS	9	1239.2 F			-		A					
HCM 25th %tile Q(veh)		32.2	A 0	A		A 0.2	-	-				
)	32.2	0	-	-	0.2	-	-	-			
Notes												
	acity			eeds 30	10-			Not De	Feed	11 All 11	najor vo	hanne in

SR 53 at Malcolm Bridge Rd 09/26/2019 Baseline JRA

2042 PM

HCM 2010 TWSC 1: Rays Church Rd/Malcolm Bridge Rd & Hog Mountain Rd

12/03/2019

Intersection												
Int Delay, s/veh	771.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		-			-			-4-			- 4+	
Traffic Vol, veh/h	15	680	15	15	600	125	15	65	15	135	100	5
Future Vol, veh/h	15	680	15	15	600	125	15	65	15	135	100	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length			-							-		-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	75	75	75	82	82	82
Heavy Vehicles, %	2	2	2	4	4	4	0	0	0	1	1	1
Mymt Flow	17	756	17	17	667	139	20	87	20	165	122	6
Major/Minor M	Major1		1	Vajor2		l. I	linor1		1	Vinor2		
Conflicting Flow All	806	0	0	773	0	0	1634	1639	765	1623	1578	737
*					-							
			-									-
Critical Hdwy	4 12		-	4 14		-			62			6.21
Critical Hdwy Stg 1												
Critical Hdwy Stg 2			-		-	-						-
Follow-up Hdwy	2,218			2 2 3 6					3.3			3,309
Pot Cap-1 Maneuver			-			-						
							382	401		394	411	-
			-									-
Platoon blocked, %		-			-							
Mov Cap-1 Maneuver	819			833				94	406	~ 15	~ 102	420
Mov Cap-2 Maneuver			-			-		94				-
			-			-	368	387		380	395	-
								369		253	382	
Approach	EB			WB			NB	$\[+ \] \] \] \] \] \] \] \] \] \] \] \] \] $				
HCM Control Delay, s				0.2					\$!			
HCM LOS	Hay, siveh 771.5 ment EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Configurations - - +											
Minor Lane/Major Mvm	t t	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		-		-			-	-				
HCM Lane V/C Ratio												
HCM Lane LOS		-										
HCM 95th %tile Q(veh)												
Notes												
	noit :	C: De	lau ava	oode 24	100	- Com	u dočan	Not Det	feed	1.11-		dume in
 volume exceeds cap 	acity	- ф.: De	ay exo	9602 3(NS '	•. Comp	Juradow	NOC DB	med	. AIT	najur vo	aume n

SR 53 at Malcolm Bridge Rd 09/26/2019 Baseline JRA

11/18/2019 Version 4.1

Appendix F: Roundabout Analysis (Build & Design Years) – GDOT Tool (v4.1)

Georgia Reportance	at of Pearsports	iner:		Round	about Anal Single Lan	r			
General & Site I	Information					v 4.1			
Analyst:			1	RA				N	
Agency/Co:				kins			NW.		NE
Date:				/2019					/
Project or PI#:			N	/A					
ear, Peak Hour:				22 AM Peak	k .		w —		
County/District:			Occ	onee					
ntersection		SR	53 @ Malo	sw	- I	SE			
Name:					s .	-			
Volum				Ente	v Logo /EP	OM)			1 North
volum	es	N (1)	NE (2)	E (3)	y Legs (FR SE (4)	S (5)	SW (6)	W (7)	NW (8
	N (1), vph			45		110		5	
Exit	NE (2), vph								
Legs	E (3), vph	55				15		440	
(TO)	SE (4), vph								
-	S (5), vph	45		30				20	
	SW (6), vph								
	W (7), vph	1		310		15			
	NW (8), vph								
Output To	tal Vehicles	101	0	385	0	140	0	465	0
Volume Chara	cteristics	N	NE	E	SE	s	SW	w	NW
6 Cars		91.0%	100.0%	89.0%	100.0%	96.0%	100.0%	92.0%	100.09
6 Heavy Vehicle	ŝ	9.0%	0.0%	11.0%	0.0%	4.0%	0.0%	8.0%	0.0%
6 Bicycle		0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
f of Pedestrians	(ped/hr)	0	0	0	0	0	0	0	0
PHF		0.84	0.95	0.83	0.95	0.66	0.95	0.91	0.95
HV		0.917	1.000	0.901	1.000	0.962	1.000	0.926	1.000
ped		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Entry/Conflict	ina Flows	N	NE	E	SE	S	SW	w	NW
Flow to Leg #		0	0	60	0	173	0	6	0
	E (2), pcu/h	0	0	0	0	0	0	0	0
	E (3), pcu/h	71	0	0	0	24	Ő	522	ŏ
	E (4), pcu/h	0	0	0	0	0	Ő	0	ŏ
	S (5), pcu/h	58	0	40	0	0	0	24	ő
	V (6), pcu/h	0	0	0	0	0	Ő	0	Ő
	V (7), pcu/h	1	0	415	0	24	Ő	ő	ŏ
	N (8), pcu/h	0	0	0	0	0	Ő	ő	ŏ
	flow, pcu/h		0	515	0	221	0	552	ŏ
	flow, pcu/h		0	203	0	600	0	170	0
		478						170	0
HCM 6th E	dition	N	NE NE	E E	res of Effe SE	sctivenes S	SW	w	NW
intry Capacity, v		777	NA	1011	NA	720	NA	1074	NA
Entry Flow Rates	-	120	NA	464	NA	212	NA	511	NA
//C ratio	, vpri	0.15	11/1	0.46	114	0.29	11/4	0.48	11/4
Control Delay, s	ec/ncu	6		9		9		9	
control Delay, S	ce/peu							A	<u> </u>
		A .							
LOS 95th % Queue (f	(*)	A 15		A 68		A 32		71	

Georgia Department of Transportation Office of Traffic Operations

11/18/2019 Version 4.1

Cecegia Repa	artment of Decosportation	-		Nound	about Anal Single Lan	-			
General & S	Site Information					v 4.1			
Analyst:			I	RA				N	
Agency/Co:			Ati	kins			NW	- I	_ ^{NE}
Date:			9/27	/2019					/
Project or Pl	1#:		N	/A			w —		
Year, Peak H	lour:		Future 202	22 PM Peal	<				
County/Dist	rict:		Occ	onee					
Intersection		SR	53 @ Malo	olm Bridge:	e Rd		sw	_	SE
Name:								s -	1 North
Vo	lumes			Entr	y Legs (FF	ROM)			
		N (1)	NE (2)	E (3)	SE (4)	S (5)	SW (6)	W (7)	NW (8)
	N (1), vph			85		45		10	
Exit	NE (2), vph	0.2						460	
Legs	E (3), vph	90				10		460	
(TO)	SE (4), vph	<i>cr</i>		10				10	
	S (5), vph	65		10				10	
	SW (6), vph			405		10			
	W (7), vph	1		405		10			
Output	NW (8), vph Total Vehicles	156	0	500	0	65	0	480	0
output	Total vehicles	130	0	500	0	65	0	460	0
	haracteristics	N	NE	Е	SE	S	SW	w	NW
6 Cars		99.0%	100.0%	96.0%	100.0%	100.0%	100.0%	98.0%	100.0%
% Heavy Ve	hicles	1.0%	0.0%	4.0%	0.0%	0.0%	0.0%	2.0%	0.0%
% Bicycle	1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	rians (ped/hr)	0	0	0	0	0	0	0	0
PHF		0.82	0.95	0.90	0.95	0.75	0.95	0.90	0.95
F _{HV}		0.990	1.000	0.962	1.000	1.000	1.000	0.980	1.000
Fped		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Entry/Con	oflicting Flows	N	NE	E	SE	S	SW	w	NW
Flow to Le	g # N (1), pcu/h	0	0	98	0	60	0	11	0
	NE (2), pcu/h	0	0	0	0	0	0	0	0
	E (3), pcu/h	111	0	0	0	13	0	521	0
	SE (4), pcu/h	0	0	0	0	0	0	0	0
	S (5), pcu/h	80	0	12	0	0	0	11	0
	SW (6), pcu/h	0	0	0	0	0	0	0	0
	W (7), pcu/h	1	0	468	0	13	0	0	0
	NW (8), pcu/h	0	0	0	0	0	0	0	0
	ntry flow, pcu/h	192	0	578	0	87	0	544	0
Conflic	cting flow, pcu/h	493	0	85	0	644	0	202	0
		Results	: Approad	ch Measu	res of Effe	ectivenes	s		
HCM 6	6th Edition	N	NE	E	SE	S	sw	w	NW
Entry Capac	ity, vph	826	NA	1217	NA	716	NA	1100	NA
Entry Flow F	Rates, vph	190	NA	556	NA	87	NA	533	NA
V/C ratio		0.23		0.46		0.12		0.48	
Control Dela	ay, sec/pcu	7		8		6		9	
control ben									
LOS		A		A		A		A	

Georgia Department of Transportation Office of Traffic Operations

11/18/2019 Version 4.1

Cecergia Repo	riment of Temportati	ion (about Anal Single Lan				
General & S	ite Information					v 4.1			
Analyst:			l	RA			NW	N	
Agency/Co:			At	kins			l "",	- I	NE
Date:			9/27	/2019					
Project or Pla	#:		N	/A			w —		
rear, Peak H	our:			42 AM Pea	k				
County/Distr	rict:			onee				T	
Intersection		SR	53 @ Malo	olm Bridge	e Rd		SW	- I	SE
Name:								s -	1
									North
Voi	lumes	N (1)	NE (2)		y Legs (FF SE (4)		SW (6)	W (7)	NW (8)
	N (1), vph	N (1)	NE (2)	E (3) 70	3E (4)	S (5) 165	344 (6)	5	1999 (0)
Exit	NE (2), vph			70		103			
Legs	E (3), vph	80				20		655	
(TO)	SE (4), vph								
	S (5), vph	70		45				25	
	SW (6), vph								
	W (7), vph	1		465		25			
	NW (8), vph								
Output	Total Vehicles	151	0	580	0	210	0	685	0
	•								
Volume Cl	haracteristics	N	NE	E	SE	S	SW	w	NW
% Cars		91.0%	100.0%	89.0%	100.0%	96.0%	100.0%	92.0%	100.0%
% Heavy Veh	nicles	9.0%	0.0%	11.0%	0.0%	4.0%	0.0%	8.0%	0.0%
% Bicycle		0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	ans (ped/hr)	0	0	0	0	0	0	0	0
PHF		0.84	0.95	0.83	0.95	0.66	0.95	0.91	0.95
ни		0.917	1.000	0.901	1.000	0.962	1.000	0.926	1.000
ped		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Entry/Cont	flicting Flows	N	NE	E	SE	S	SW	w	NW
	g # N (1), pcu/h	0	0	94	0	260	0	6	0
	NE (2), pcu/h	0	0	0	0	0	0	0	0
	E (3), pcu/h	104	0	0	0	32	0	777	0
	SE (4), pcu/h	0	0	0	0	0	0	0	0
	S (5), pcu/h	91	0	60	0	0	0	30	0
	SW (6), pcu/h	0	0	0	0	0	0	0	0
	W (7), pcu/h	1	0	622	0	39	0	0	0
	NW (8), pcu/h	0	0	0	0	0	0	0	0
	ntry flow, pcu/h	196	0	776	0	331	0	813	0
Conflic	ting flow, pcu/h	721	0	305	0	887	0	255	0
		Results	: Approa	ch Measu	res of Eff	ectivenes	s		
	th Edition	N	NE	E	SE	S	SW	w	NW
Entry Capaci		607	NA	911	NA	537	NA	985	NA
Intry Flow R	ates, vph	180	NA	699	NA	318	NA	753	NA
V/C ratio		0.30		0.77		0.59		0.76	
Control Dela	y, sec/pcu	10		20		19		18	L
LOS	(5)	A		C		C		C	
95th % Queu	Je (ft)	34	1	213		100	I	207	1

Georgia Department of Transportation Office of Traffic Operations

11/18/2019 Version 4.1

Coverin Department of T		ion			about Anal Single Lan	-			
General & Site Infor	mation					v 4.1			
Analyst:			I	RA			NW	N	
Agency/Co:			Ati	kins			l		NE
Date:			9/27	/2019					
Project or PI#:			N	/A			w —		E
Year, Peak Hour:			Future 204	2 PM Peal	<				
County/District:			Occ	onee				T	
ntersection		SR	53 @ Malo	olm Bridge	Rd		sw	- I	SE
Name:								s	1 North
Volumes				Entr	y Legs (FF	ROM)	L		
		N (1)	NE (2)	E (3)	SE (4)	S (5)	SW (6)	W (7)	NW (8)
	(1), vph			125		65		15	
Exit NE	(2), vph								
	(3), vph	135				15		680	
	(4), vph								
	(5), vph	100		15				15	
	(6), vph								
	(7), vph	5		600		15			
	(8), vph								
Output Total \	/ehicles	240	0	740	0	95	0	710	0
Volume Character	istics	N	NE	Е	SE	S	SW	w	NW
% Cars		99.0%	100.0%	96.0%	100.0%	100.0%	100.0%	98.0%	100.0%
% Heavy Vehicles		1.0%	0.0%	4.0%	0.0%	0.0%	0.0%	2.0%	0.0%
% Bicycle		0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
t of Pedestrians (ped	i/hr)	0	0	0	0	0	0	0	0
PHF		0.82	0.95	0.90	0.95	0.75	0.95	0.90	0.95
FHV		0.990	1.000	0.962	1.000	1.000	1.000	0.980	1.000
ped		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Entry/Conflicting	Flows	N	NE	E	SE	S	SW	w	NW
Flow to Leg # N (1)	_	0	0	144	0	87	0	17	0
), pcu/h	0	0	0	0	0	0	0	0
), pcu/h	166	0	0	0	20	0	771	0
), pcu/h	0	0	0	0	0	0	0	0
), pcu/h	123	0	17	0	0	0	17	0
SW (6), pcu/h	0	0	0	0	0	0	0	0
W (7), pcu/h	6	0	693	0	20	0	0	0
), pcu/h	0	0	0	0	0	0	0	0
Entry flow		296	0	855	0	127	0	805	0
Conflicting flow	/, pcu/h	731	0	124	0	954	0	307	0
connicting non	, poor i		: Approad					507	
HCM 6th Editio	on	N	NE	E	SE	s	SW	w	NW
Entry Capacity, vph		648	NA	1170	NA	522	NA	989	NA
Entry Flow Rates, vpl	h	293	NA	822	NA	127	NA	789	NA
V/C ratio		0.45		0.70		0.24		0.80	
-	cu	12		14		10		20	
control Delay, sec/p									
Control Delay, sec/p		В		В		В		С	

Georgia Department of Transportation Office of Traffic Operations

Appendix G: Roundabout Analysis (Build & Design Years) – SIDRA 7 MOVEMENT SUMMARY

SR 53 @ Malcolm Bridge Rd Roundabout

		rformance -									
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Rays Ch	veh/h urch Rd	%	v/c	Sec	_	veh	ft	_	per veh	mph
1	L2	23	4.0	0.295	8.6	LOS A	1.9	49.9	0.76	0.68	38.4
6	T1	167	4.0	0.295	8.6	LOS A	1.9	49.9	0.76	0.68	38.7
16	R2	23	4.0	0.295	8.6	LOS A	1.9	49.9	0.76	0.68	37.6
Appro	ach	212	4.0	0.295	8.6	LOS A	1.9	49.9	0.76	0.68	38.5
East:	SR 53										
7	L2	36	11.0	0.485	9.7	LOS A	4.0	108.2	0.63	0.45	33.4
4	T1	373	11.0	0.485	9.7	LOS A	4.0	108.2	0.63	0.45	33.6
14	R2	54	11.0	0.485	9.7	LOS A	4.0	108.2	0.63	0.45	32.7
Appro	ach	464	11.0	0.485	9.7	LOS A	4.0	108.2	0.63	0.45	33.5
North:	Malcolm	Bridge Rd									
5	L2	65	9.0	0.161	6.5	LOS A	1.0	25.8	0.66	0.53	37.4
2	T1	54	9.0	0.161	6.5	LOS A	1.0	25.8	0.66	0.53	37.8
12	R2	1	9.0	0.161	6.5	LOS A	1.0	25.8	0.66	0.53	36.7
Appro	ach	120	9.0	0.161	6.5	LOS A	1.0	25.8	0.66	0.53	37.6
West:	SR 53										
3	L2	5	8.0	0.493	9.3	LOS A	4.1	108.2	0.57	0.38	34.2
8	T1	484	8.0	0.493	9.3	LOS A	4.1	108.2	0.57	0.38	34.4
18	R2	22	8.0	0.493	9.3	LOS A	4.1	108.2	0.57	0.38	33.4
Appro	ach	511	8.0	0.493	9.3	LOS A	4.1	108.2	0.57	0.38	34.4
All Ve	hicles	1307	8.5	0.493	9.1	LOS A	4.1	108.2	0.63	0.47	34.9

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: SIDRA Standard.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ATKINS NORTH AMERICA | Processed: Friday, November 15, 2019 7:44:06 AM Project: M:\TP_Projects\2019\GDOT Safety\SR 53_Malcolm Bridge Rd\SIDRA\SR 53 @ Malcolm Bridge Rd.sip7

MOVEMENT SUMMARY

V Site: 101 [SR 53 @ Malcolm Bridge Road 2022 PM]

SR 53 @ Malcolm Bridge Road Roundabout

Move		rformance -	Vehicle	s							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	- Bave Ch	veh/h urch Road	%	v/c	Sec		veh	ft		per veh	mph
				0.440	~ ~	100.4	0.7	40.4	0.70	0.50	10.0
1	L2	13	0.0	0.119	6.2	LOS A	0.7	18.4	0.72	0.59	40.6
6	T1	60	0.0	0.119	6.2	LOS A	0.7	18.4	0.72	0.59	40.7
16	R2	13	0.0	0.119	6.2	LOS A	0.7	18.4	0.72	0.59	39.6
Appro	ach	87	0.0	0.119	6.2	LOS A	0.7	18.4	0.72	0.59	40.5
East:	SR 53										
7	L2	11	4.0	0.471	8.1	LOS A	4.2	108.2	0.42	0.22	35.4
4	T1	450	4.0	0.471	8.1	LOS A	4.2	108.2	0.42	0.22	35.5
14	R2	94	4.0	0.471	8.1	LOS A	4.2	108.2	0.42	0.22	34.5
Appro	ach	556	4.0	0.471	8.1	LOS A	4.2	108.2	0.42	0.22	35.3
North	Malcolm	Bridge Road									
5	L2	110	1.0	0.226	6.6	LOS A	1.4	35.3	0.66	0.54	38.5
2	T1	79	1.0	0.226	6.6	LOS A	1.4	35.3	0.66	0.54	38.7
12	R2	1	1.0	0.226	6.6	LOS A	1.4	35.3	0.66	0.54	37.7
Appro	ach	190	1.0	0.226	6.6	LOS A	1.4	35.3	0.66	0.54	38.6
West:	SR 53										
3	L2	11	2.0	0.500	9.2	LOS A	4.2	106.8	0.61	0.43	35.1
8	T1	511	2.0	0.500	9.2	LOS A	4.2	106.8	0.61	0.43	35.2
18	R2	11	2.0	0.500	9.2	LOS A	4.2	106.8	0.61	0.43	34.2
Appro	ach	533	2.0	0.500	9.2	LOS A	4.2	106.8	0.61	0.43	35.2
All Ve	hicles	1366	2.5	0.500	8.2	LOS A	4.2	108.2	0.55	0.37	36.0

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: SIDRA Standard.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ATKINS NORTH AMERICA | Processed: Friday, November 15, 2019 8:05:13 AM Project: M:\TP_Projects\2019\GDOT Safety\SR 53_Malcolm Bridge Rd\SIDRA\SR 53 @ Malcolm Bridge Rd.sip7

MOVEMENT SUMMARY

😵 Site: 101 [SR 53 @ Malcolm Bridge Rd 2042 AM]

SR 53 @ Malcolm Bridge Road Roundabout

		rformance ·									
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Rays Chu	veh/h	%	v/c	Sec	_	veh	ft		per veh	mpł
1	L2	38	4.0	0.636	22.1	LOS C	6.7	173.4	1.00	1.12	31.3
6	T1	250	4.0	0.636	22.1	LOS C	6.7	173.4	1.00	1.12	31.4
16	R2	30	4.0	0.636	22.1	LOS C	6.7	173.4	1.00	1.12	30.7
Appro	ach	318	4.0	0.636	22.1	LOS C	6.7	173.4	1.00	1.12	31.3
East:	SR 53										
7	L2	54	11.0	0.780	20.6	LOS C	12.0	327.3	0.99	0.94	28.8
4	T1	560	11.0	0.780	20.6	LOS C	12.0	327.3	0.99	0.94	29.0
14	R2	84	11.0	0.780	20.6	LOS C	12.0	327.3	0.99	0.94	28.2
Appro	ach	699	11.0	0.780	20.6	LOS C	12.0	327.3	0.99	0.94	28.9
North	: Malcolm 8	Bridge Rd									
5	L2	95	9.0	0.320	11.0	LOS B	2.3	61.8	0.89	0.82	35.0
2	T1	83	9.0	0.320	11.0	LOS B	2.3	61.8	0.89	0.82	35.3
12	R2	1	9.0	0.320	11.0	LOS B	2.3	61.8	0.89	0.82	34.3
Appro	ach	180	9.0	0.320	11.0	LOS B	2.3	61.8	0.89	0.82	35.1
West:	SR 53										
3	L2	5	8.0	0.754	17.5	LOS C	10.8	287.1	0.90	0.77	30.9
8	T1	720	8.0	0.754	17.5	LOS C	10.8	287.1	0.90	0.77	30.6
18	R2	27	8.0	0.754	17.5	LOS C	10.8	287.1	0.90	0.77	29.8
Appro	ach	753	8.0	0.754	17.5	LOS C	10.8	287.1	0.90	0.77	30.6
All Ve	hicles	1949	8.5	0.780	18.8	LOS C	12.0	327.3	0.95	0.89	30.4

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: SIDRA Standard.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ATKINS NORTH AMERICA | Processed: Friday, November 15, 2019 7:49:58 AM Project: M:\TP_Projects\2019\GDOT Safety\SR 53_Malcolm Bridge Rd\SIDRA\SR 53 @ Malcolm Bridge Rd.sip7

MOVEMENT SUMMARY

V Site: 101 [SR 53 @ Malcolm Bridge Road 2042 PM]

SR 53 @ Malcolm Bridge Road Roundabout

		rformance -									
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	- Ravs Ch	veh/h urch Road	%	v/c	Sec	_	veh	ft	_	per veh	mpł
1	L2	20	0.0	0.265	11.5	LOS B	2.0	50.3	0.96	0.89	37.1
6	T1	87	0.0	0.265	11.5	LOS B	2.0	50.3	0.96	0.89	37.2
-											
16	R2	20	0.0	0.265	11.5	LOS B	2.0	50.3	0.96	0.89	36.2
Appro	ach	127	0.0	0.265	11.5	LOS B	2.0	50.3	0.96	0.89	37.0
East:	SR 53										
7	L2	17	4.0	0.695	13.1	LOS B	8.7	225.6	0.70	0.42	32.8
4	T1	667	4.0	0.695	13.1	LOS B	8.7	225.6	0.70	0.42	32.9
14	R2	139	4.0	0.695	13.1	LOS B	8.7	225.6	0.70	0.42	32.0
Appro	ach	822	4.0	0.695	13.1	LOS B	8.7	225.6	0.70	0.42	32.8
North:	Malcolm	Bridge Road									
5	L2	165	1.0	0.437	11.7	LOS B	3.5	88.0	0.90	0.86	35.6
2	T1	122	1.0	0.437	11.7	LOS B	3.5	88.0	0.90	0.86	35.8
12	R2	6	1.0	0.437	11.7	LOS B	3.5	88.0	0.90	0.86	34.9
Appro	ach	293	1.0	0.437	11.7	LOS B	3.5	88.0	0.90	0.86	35.7
West:	SR 53										
3	L2	17	2.0	0.783	19.1	LOS C	12.4	313.9	0.97	0.89	30.5
8	T1	756	2.0	0.783	19.1	LOS C	12.4	313.9	0.97	0.89	30.5
18	R2	17	2.0	0.783	19.1	LOS C	12.4	313.9	0.97	0.89	29.8
Appro	ach	789	2.0	0.783	19.1	LOS C	12.4	313.9	0.97	0.89	30.5
All Ve	hicles	2030	2.5	0.783	15.1	LOS C	12.4	313.9	0.85	0.69	32.5

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

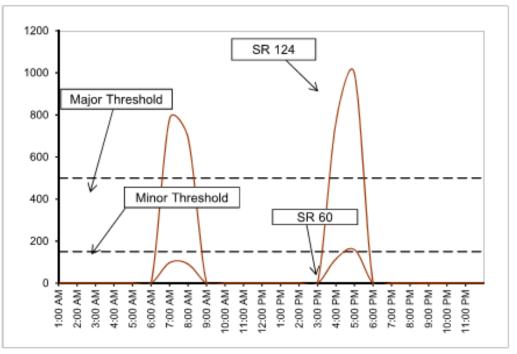
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: SIDRA Standard.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

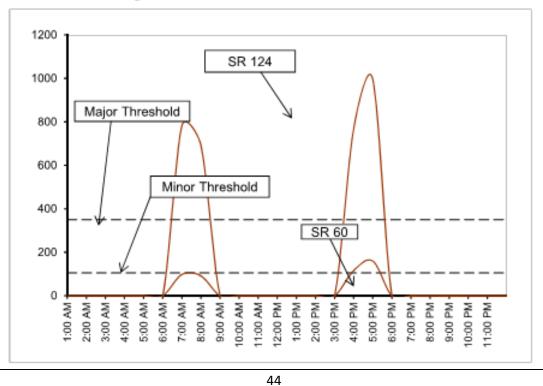
SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ATKINS NORTH AMERICA | Processed: Friday, November 15, 2019 8:13:51 AM Project: M:\TP_Projects\2019\GDOT Safety\SR 53_Malcolm Bridge Rd\SIDRA\SR 53 @ Malcolm Bridge Rd.sip7



Appendix H: Traffic Signal Warrant Analyses

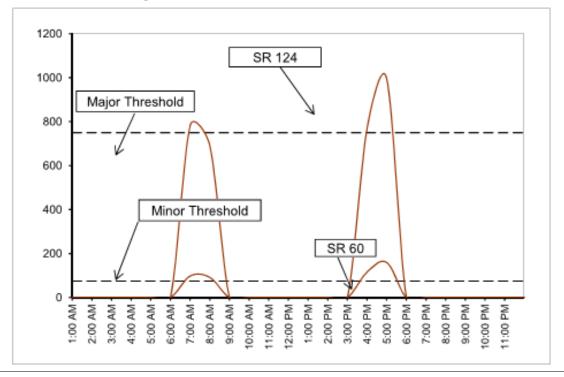
Testing no		int requirement		nes minor	
hour	major st volume	minor st volume	major st criteria	minor st criteria	test
1:00 AM	0	0	500	150	0
2:00 AM	0	0	500	150	0
3:00 AM	0	0	500	150	0
4:00 AM	0	0	500	150	0
5:00 AM	0	0	500	150	0
6:00 AM	0	0	500	150	0
7:00 AM	783	98	500	150	0
8:00 AM	691	92	500	150	0
9:00 AM	0	0	500	150	0
10:00 AM	0	0	500	150	0
11:00 AM	0	0	500	150	0
12:00 PM	0	0	500	150	0
1:00 PM	0	0	500	150	0
2:00 PM	0	0	500	150	0
3:00 PM	0	0	500	150	0
4:00 PM	770	116	500	150	0
5:00 PM	995	159	500	150	1
6:00 PM	0	0	500	150	0
7:00 PM	0	0	500	150	0
8:00 PM	0	0	500	150	0
9:00 PM	0	0	500	150	0
10:00 PM	0	0	500	150	0
11:00 PM	0	0	500	150	0
12:00 AM	0	0	500	150	0
onclusion:	Signal is	Not Warranted		SUM=	1

SR 53 @ Malcolm Bridge Rd Warrant 1A Check: 1 lanes major, 1 lanes minor



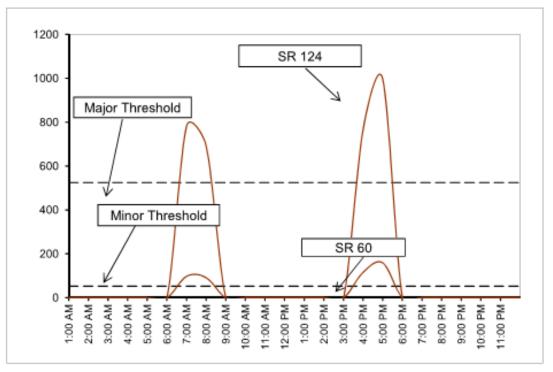
	major st	minor st	major st	minor st	
hour	volume	volume	criteria	criteria	test
1:00 AM	0	0	350	105	0
2:00 AM	0	0	350	105	0
3:00 AM	0	0	350	105	0
4:00 AM	0	0	350	105	0
5:00 AM	0	0	350	105	0
6:00 AM	0	0	350	105	0
7:00 AM	783	98	350	105	0
8:00 AM	691	92	350	105	0
9:00 AM	0	0	350	105	0
10:00 AM	0	0	350	105	0
11:00 AM	0	0	350	105	0
12:00 PM	0	0	350	105	0
1:00 PM	0	0	350	105	0
2:00 PM	0	0	350	105	0
3:00 PM	0	0	350	105	0
4:00 PM	770	116	350	105	1
5:00 PM	995	159	350	105	1
6:00 PM	0	0	350	105	0
7:00 PM	0	0	350	105	0
8:00 PM	0	0	350	105	0
9:00 PM	0	0	350	105	0
10:00 PM	0	0	350	105	0
11:00 PM	0	0	350	105	0
12:00 AM	0	0	350	105	0
onclusion:	Signal is	Not Warranted		SUM=	2

SR 53 @ Malcolm Bridge Rd	
Warrant 1A 70% Check: 1 lanes major, 1 lanes minor	
eting normal warrant requiremente:	


Testing normal warrant requirements: major st minor st major st minor st volume criteria criteria hour volume test 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM 9:00 PM 10:00 PM 11:00 PM 12:00 AM

Conclusion: Signal is Not Warranted

SUM=



GDST Georgia Department of Transport of Transportation

	major st	minor st	major st	minor st	
hour	volume	volume	criteria	criteria	test
1:00 AM	0	0	525	53	0
2:00 AM	0	0	525	53	0
3:00 AM	0	0	525	53	0
4:00 AM	0	0	525	53	0
5:00 AM	0	0	525	53	0
6:00 AM	0	0	525	53	0
7:00 AM	783	98	525	53	1
8:00 AM	691	92	525	53	1
9:00 AM	0	0	525	53	0
10:00 AM	0	0	525	53	0
11:00 AM	0	0	525	53	0
12:00 PM	0	0	525	53	0
1:00 PM	0	0	525	53	0
2:00 PM	0	0	525	53	0
3:00 PM	0	0	525	53	0
4:00 PM	770	116	525	53	1
5:00 PM	995	159	525	53	1
6:00 PM	0	0	525	53	0
7:00 PM	0	0	525	53	0
8:00 PM	0	0	525	53	0
9:00 PM	0	0	525	53	0
10:00 PM	0	0	525	53	0
11:00 PM	0	0	525	53	0
12:00 AM	0	0	525	53	0
nclusion:	Signal is	Not Warranted		SUM=	4

SR 53 @ Malcolm Bridge Rd
Warrant 1B 70% Check: 1 lanes major, 1 lanes minor
Testing normal warrant requirements:

		_																								
Warrant	Conclusion	12:00 AM	11:00 PM	10:00 PM	9:00 PM	8:00 PM	7:00 PM	6:00 PM	5:00 PM	4:00 PM	3:00 PM	2:00 PM	1:00 PM	12:00 PM	11:00 AM	10:00 AM	9:00 AM	8:00 AM	7:00 AM	6:00 AM	5:00 AM	4:00 AM	3:00 AM	2:00 AM	1:00 AM	Hour
is Satisfied	Conclusion: Signal is	0	0	0	0	0	0	0	566	770	0	0	0	0	0	0	0	169	28 2	0	0	0	0	0	0	Major Street Volume*
Warrant is Satisfied when any Four Hours of an Average Day Exceed the Threshold		0	0	0	0	0	0	0	159	116	0	0	0	0	0	0	0	92	86	0	0	0	0	0	0	Minor Street Approach
Hours of an Av shold	Not Warranted	310	310	310	310	310	310	310	120	180	310	310	310	310	310	310	310	220	180	310	310	310	310	310	310	Minor Approach Criteria**
erage Day	1	No	No	No	No	No	No	No	Yes	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	Criteria Satisfied
				2 OR MORE LANES/2 OR MORE LANES SR 53 @ Malcolm Bridge Rd	2 OR MORE LANEST LANE		TOTAL OF BOTH APPROACHES - VPH		200 300 400 500 600 700 800		STF		10									48			500	FIGURE 4C-1. WARRANT 2 - FOUR HOUR VEHICULAR VOLUME

* Major Street Volume is Total for Both Approaches ** From MUTCD Figure 4C-1

> 47 GDQT Georgia Department of Transportation

SR 53 @ Malcolm Bridge Rd Warrant 2 Check: 1 lanes major, 1 lanes minor

Conclusio	Constanting of the local sector	12:00 AM	11:00 PM	10:00 PM	9:00 PM	8:00 PM	8:00 PM	7:00 PM	00:00 PM	5:00 PM	4:00 PM	3:00 PM	2:00 PM	1:00 PM	12:00 PM	11:00 AM	10:00 AM	MV 00:6	8:00 AM	MV 00:2	WA 00:9	2:00 AM	4:00 AM	3:00 AM	2:00 AM	1:00 AM	Hour
Conclusion: Signal is Warrant is Satisfied v	Chanal in	0	0	0	0	0	0	0	0	995	770	0	0	0	0	0	0	0	691	783	0	0	0	0	0	0	Major Street Volume*
on clusion: Signal is Not Warranted		0	0	0	0	0	0	0	0	159	116	0	0	0	0	0	0	0	92	86	0	0	0	0	0	0	Minor Street Approach
Not Warranted	at Warmatad	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	Approach Criteria**
erane Dav 0	10	No	No	No	No	No	R	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	Criteria Satisfied
				2 OR MORE LANES/2 OR MORE LANES SR 53 @ Malcolm Bridge Rd	1 LANET LANE			IOTAL OF BOTH APPROACHES - VPH	TOTAL	200 300 400 500 500 /00 800 1		STF				эн / /	200						400	VP		500	FIGURE 4C-1. WARRANT 2 - FOUR HOUR VEHICULAR VOLUME

SR 53 @ Malcolm Bridge Rd Warrant 2 70% Check: 1 lanes major, 1 lanes minor

* Major Street Volume is Total for Both Approaches ** From MUTCD Figure 4C-1

Appendix I: Projected Turning Movement Diagrams

Appendix J: Intersection Control Evaluation (ICE)

GDQT	GDOT	ICE STAG	E 2: ALTE	RNATIV	E SELECTI	ON DECI	SION RE		n 2.15 Revise	×1.07/01/20		
	NUA		0.00		1 - Gaines	dlla			9/26/2019	0/10/1/20		
GDOT PI # (or N/A)						vine	Agency/Firm: Atkins					
County: Project Location:		Jalaalm Rd		rea Type:	Rurai		Agency/Firm: Atkins Analyst: JRA					
Existing Intersection Control:	<u> </u>		-		Туре о	of Analysis:	Safety Fur	nded Projec				
Opening / Design Year Traffic Operation	8				Crash Data	Enter most	0	rash Sever	fty	ſ		
Intersection meets signal/AWS warrants?	Meets A	WS only	Complete	Streets	recent 5 years	of crash data	PDO	Injury Cresh*	Fatal Crash*	ſ		
Traffic Analysis Measure of Effectiveness	Intersect	Ion Delay	Warrants		Angle		18	17	0	81%		
Traffic Analysis Software Used	Syncl	hro 10	PEDES		Head-On		0	0	0	0%		
Analysis Time Period	AM Peak Hr	PM Peak Hr	BICYC	les 🛱	Rear End		2	1	0	7%		
2022 Opening Yr No-Build Peak Hr Intersection Delay	36.9 sec	27.0 sec		ат ба	Sideswipe -	same	1	1	0	5%		
2022 Opening Yr No-Build Peak Hr Intersection WC	1.23	1.17		~~~~~ S	Sideswipe -	opposite	0	1	0	2%		
2042 Design Yr No-Build Peak Hr Intersection Delay	500.0 sec	500.0 sec			Not Collision w		1	1	0	5%		
2042 Design Yr No-Bulld Peak Hr Intersection V/C	5.00	5.00			Not contain in	TOTALS:	22	21	0	43		
2042 Design Trikorbulla Peak Hrintersection V/C	3.00	3.00			There is a second se			alties, not num	-	40		
Aiternatives Analysis:		ative 1	Altern		Altern	ative 3	Altern	ative 4	Altern	ative 5		
Proposed Control Type/Improvement:		al (Al-Way	Single		Traffic	Signal	N	WA .	N	/A		
		op) acription here	Round			approaches						
Project Cost: (From CostEst Worksheet			Additional des									
Construction Cost	+	,000	\$2,00		\$507							
ROW Cost	\$	-	\$400		\$	-						
Environmental Cost	\$	0	\$	-	\$	0						
Reimbursable Utility Cost	\$	0	\$150	,000	\$10,000							
Design & Contingency Cost	\$10,	000	\$700	,000	\$177	,000						
Cost Adjustment (ustrication regid)	0	%	0'	%	0	%						
Total Cost	\$60,000		\$3,25	0,000	\$694	,000						
Traffic Operations:	User Cos	/ Overtide	User Cost	Overnitie								
Traffic Analysis Software Used	Quer	bro 10	SIDF	24.7	Ounci	hro 10						
Analysis Period		Synchro 10 V Peak Hr PM Peak Hr		PM Peak Hr		PM Peak Hr						
2042 Design Yr Build Intersection Delay		223.2 sec	AM Peak Hr 18.8 sec	15.1 sec	20.4 sec	18.4 sec						
2042 Design Yr Build Intersection V/C	1.72	1.72	0.78	0.78	0.89	0.86						
-			0.70	0.10	0.00	0.00						
Safety Analysis:												
Predefined CRF: PDO		3%	71			%						
Predefined CRF: Fatal/Inj	7	7%	87	%	40	1%						
Predefined CRF Source:		ringhouse #s 3128	FHWA Clear 233 /			inghouse #s / 7984						
User Defined CRF: PDO												
User Defined CRF: FataVinj												
User Defined CRF Source												
(write in if applicable):												
Environmental Impacts:1												
Historic District/Property	No	one	No	ne	Ne	ne						
Archaeology Resources		one		ne		ne						
Graveyard		one		ne		ne						
Stream		one		ne		ne						
Underground Tank/Hazmat		one		ne		ne						
Park Land		one		ne		ne						
EJ Community		one		ne		ne						
Wooded Area	No	one	No	ne	No	ne						
Wetland		one	No			ne						
		nmental impact										
Stakeholder Posture:	Enveronment	al impacts are o	nly preliminary	estimetes; de			cumentation w	be included s	with project cond	cept report		
Local Community Support	Nei	utral	Supp	ortive		ıtral						
GDOT Support	Nei	utral	Supp	ortive	Net	utral						
-												
Final ICE Stage 2 Score:	4	.1	6.	.4		-						

Provide additional comments and/or explain any unique analysis inputs, or

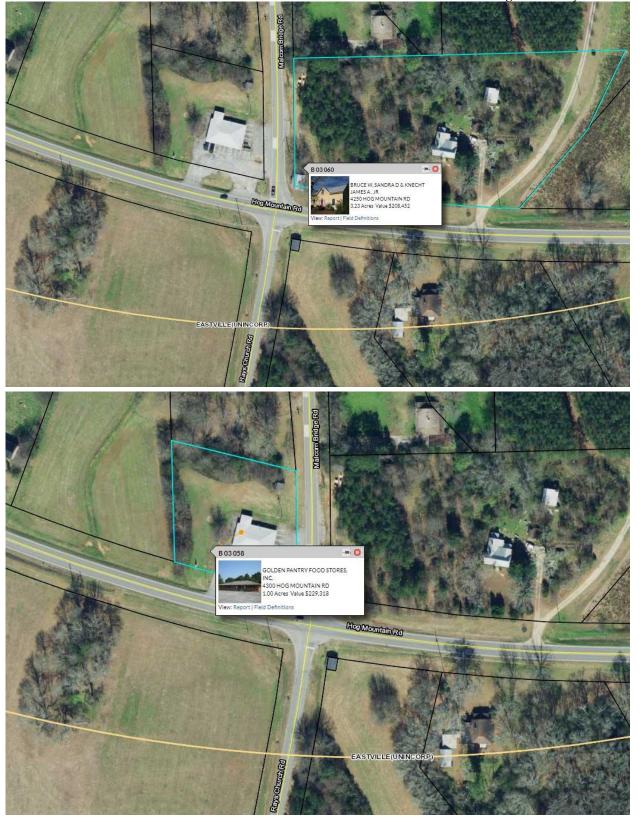
results (as necessary):

GDQT |

GDOT ICE STAGE 1: SCREENING DECISION RECORD

Georgia De	eportment of Transportatio	dbor								ICE Version 2 15 Revised 07/01/2019					
GDOT	DOT PI # N/A		Note: U	pto5altei	matives										
	t Location:	SR 53 @ Malcolm Bridge	maybe	selected a	ind NOE	~	. /~	ß	Δ /	/_ / /					
	ig Control:	Conventional (Minor Stop)	Note: Up to 5 alternatives maybe selected and evaluated; Use this ICE Note: Up to 5 alternatives Stage 1 to screen 5 or fewer alternatives to evaluate in Stage 2 Note: Up to 5 alternatives Up to 5 alternatives Note: Up to 5 alternatives Up to 5 alternatives Note: Up to 5 alternatives No No No No												
	red by:	Atkins	alternati	Stage 1 to screen 5 or fewer Stage 2											
Date: 9/26/2019					A CON	Will told Po	S. Saler	and Aese	all store	The start and start a					
		"No" to each policy question for			and a state	CAR SO CAR	CO SSIM	CHE CARD!	18 5 V	at a the state					
		e to identify which alternatives d in the Stage 2 Decision Record;		and the second	Sto Sta	E AR STO	1 480 all	and and	S. S. Call	Real den n					
		tion in the rightmost column		of the state	or and south	anality and	and core	S marker	and sta	S					
Inter	section Alter	mative (see "Intersections" tab for	. A	State at	The Car	10 58 S	and an	all all all	1.0°/	A Kat .					
		n of intersection.interchange type)	~.~~~	30 L S &	\$P 3.5 \$	\$°/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	E/5°5	\$ 6.0 g	\$ \^?`	🔊 Screening Decision Justification:					
	Conventional	(Minor Stop)	No	No	No	No	No	No	No	Existing Condition					
	Conventional	(All-Way Stop)	Yes	Yes	No	Yes	Yes	Yes	Yes	Potential Alternative to Evaluate					
	Mini Roundal	bout	No	No	No	No	No	No	No	not ideal on roads with speed limits greater than 35 mph					
	Single Lane F	Roundabout	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Potential Alternative to Evaluate					
tions	Multilane Rou	indabout	No	No	No	No	No	No	No	single lane roundabout is adequate					
Unsignalized Intersections	RCUT (stop o	control)	No	No	No	No	No	No	No	No median for u-turns, would add signific ant costs to project					
ed Int	RIRO wildown	No	No	No	No	No	No	No	No median for u-turns, would add significant costs to project						
gnaliz	High-T (unsig	No	No	No	No	No	No	No	not a t-intersection						
Unsi	Offset-T Inter	No	No	No	No	No	No	No	would require significant ROW						
	Diamond Inte	rch (Stop Control)	No	No	No	No	No	No	No	N/A - volumes & context not to scale					
		rch (RAB Control)	No	No	No	No	No	No	No	N/A - volumes & context not to scale					
	No LT Lane Im No RT Lane Im		No	No	No	No	No	No	No	N/A					
	Other unsign	alized (provide description):	No	No	No	No	No	No	No	N/A					
	Traffic Signal		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Potential Alternative to Evaluate					
	Median U-Tu	m (Indirect Left)	No	No	No	No	No	No	No	No median for u-turns, would add significant costs to project					
	RCUT (signal	lized)	No	No	No	No	No	No	No	No median for u-turns, would add significant costs to project					
	Displaced Le	ft Tum (CFI)	No	No	No	No	No	No	No	N/A - volumes & context not to scale					
ection	Continuous G	Green-T	No	No	No	No	No	No	No	not a t-intersection					
Signalized Intersections	Jughandle		No	No	No	No	No	No	No	N/A - volumes & context not to scale					
lized	Quadrant Roa	adway	No	No	No	No	No	No	No	N/A - volumes & context not to scale					
Signa	Diamond Inte	rch (Signal Control)	No	No	No	No	No	No	No	N/A - volumes & context not to scale					
	Diverging Dia	mond	No	No	No	No	No	No	No	N/A - volumes & context not to scale					
	Single Point I No LT Lane Im	2	No	No	No	No	No	No	No	N/A - volumes & context not to scale					
	No ET Lane In		No	No	No	No	No	No	No	N/A					
		zed (provide description):	No	No	No	No	No	No	No	N/A					

= Intersection type selected for more detailed analysis in Stage 2 Alternative Selection Decision Record


GDQI GDOT ICE STAGE 2: ALTERNATIVE SELECTION DECISION RECORD ICE Version 2.15 | Revised 07/01/2019 GDOT District: 1 - Gainesville Date: 9/26/2019 GDOT PI # (or N/A) N/A County: Oconee Agency/Firm: Atkins Area Type: Rural Project Location: SR 53 @ Malcolm Bridge Analyst: JRA Type of Analysis: Safety Funded Project Existing Intersection Control: Conventional (Minor Stop) Opening / Design Year Traffic Operations Crash Severity Crash Data: Enter most Intersection meets signal/AWS warrants? ecent 5 years of crash data Meets AWS only Injury Cresh" Fatal Crash PDO Complete Streets Traffic Analysis Measure of Effectiveness Intersection Delay Warrants Met? 18 Angle 17 81% 0 PEDESTRIANS Traffic Analysis Software Used Synchro 10 Head-On 0 0 0 055 AM Peak Hr PM Peak Hr Analysis Time Period BICYCLES Rear End 2 1 0 7% Ceash 36.9 sec 27.0 sec 2022 Opening Yr No-Build Peak Hr Intersection Delay 1 1 5% TRANSIT Sideswipe - same 0 2022 Opening Yr No-Build Peak Hr Intersection WC 1.23 1.17 Sideswipe - opposite 0 1 0 2% 500.0 sec 500.0 sec 2042 Design Yr No-Build Peak Hr Intersection Delay Not Collision w/Motor Veh 1 1 0 5% 2042 Design Yr No-Build Peak Hr Intersection V/C 5.00 5.00 TOTALS: 22 21 0 43 * Number of crashes resulting in injuries / fatalities, not number of persons Alternatives Analysis: Alternative 1 Alternative 2 Alternative 3 Alternative 4 ernative 5 Conventional (All-Way Single Lane Traffic Signal N/A N/A Proposed Control Type/Improvement Stop) Roundabout Project Cost: (From CostEst Worksheet 4446 not dependent by Additional description have Add LT bays all approaches \$50,000 \$2,000,000 \$507,000 Construction Cost \$400,000 ROW Cost 50 \$0 \$0 \$0 \$0 Environmental Cost \$0 \$150,000 \$10,000 Reimbursable Utility Cost \$10,000 \$700,000 \$177,000 Design & Contingency Cost Cost Adjustment (ustrication reg/d) 0% 0% 0% Total Cost \$60,000 \$3,250,000 \$694,000 User Cost Override User Cost Override Traffic Operations: Synchro 10 GDOT RND Tool 4.1 Traffic Analysis Software Used Synchro 10 Analysis Period AM Peak Hr PM Peak Hr AM Peak Hr PM Peak Hr AM Peak Hr PM Peak Hr 208.8 sec 223.2 sec 18.8 sec 15.1 sec 20.4 sec 18.4 sec 2042 Design Yr Build Intersection Delay 0.89 0.86 2042 Design Yr Build Intersection V/C 1.72 1.72 0.78 0.78 Safety Analysis: 48% 71% 44% Predefined CRF: PDO 77% 87% 40% Predefined CRF: Fatal/inj FHWA Clearinghouse # FHWA Clearinghouse # FHWA Clearinghouse # Predefined CRF Source: 315/3128 233/230 7982 / 7984 User Defined CRF: PDO User Defined CRF: FataVinj User Defined CRF Source (write in if applicable): Environmental Impacts: Historic District/Property None None None Archaeology Resources None None None Graveyard None None None Stream None None None None None Underground Tank/Hazmat None None None None Park Land None None None EJ Community None None None Wooded Area None None None Wetland ste: If environmental impact is significant (RED), provide justification impact won't jeopartize project delivery using "Env" worksheet rental impacts are only preliminary estima on will be included with project concept report Stakeholder Posture: ex; deb den mental impact do Local Community Support Neutral Neutral Supportive GDOT Support Neutral Supportive Neutral Final ICE Stage 2 Score: 4.1 64 Rank of Control Type Alternatives Note: Stage 2 score is not given (shown as "-") if signal or AWS is selected as control type but respective warrants are not met

SR 53 at Malcom Bridge Road/Rays Church Road

Provide additional comments and/or explain any unique analysis inputs, or results (as necessary):

Appendix K: Right-Of-Way Information

Appendix L: Environmental Screening

Currently there are buildings/structures in three of the four quadrants of the intersection. The structures in the northeast and southeast quadrants have been identified as potential historical resources. However, the structure in the northeast quadrant is not anticipated to be considered eligible by the State Historic Preservation Office (SHPO). Further investigation of these properties would be completed during the Concept phase and an eligibility determination would be made by the SHPO at that time.

Building in Southeast quadrant.

Building in Northeast quadrant.

Appendix M: Utility Risks

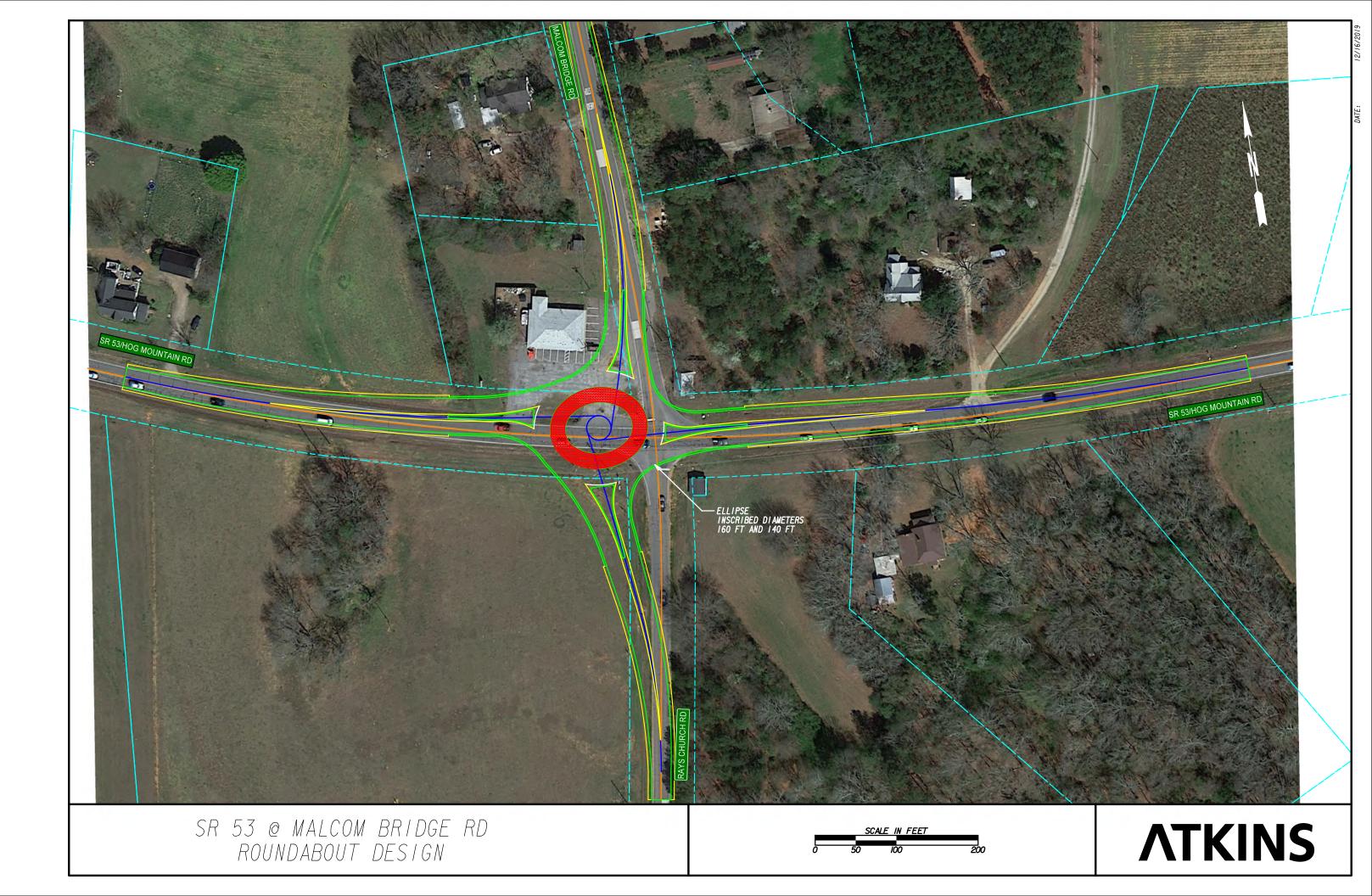
There is a Utility pole in the Southwest quadrant that is approximately 25' from the edge of pavement.

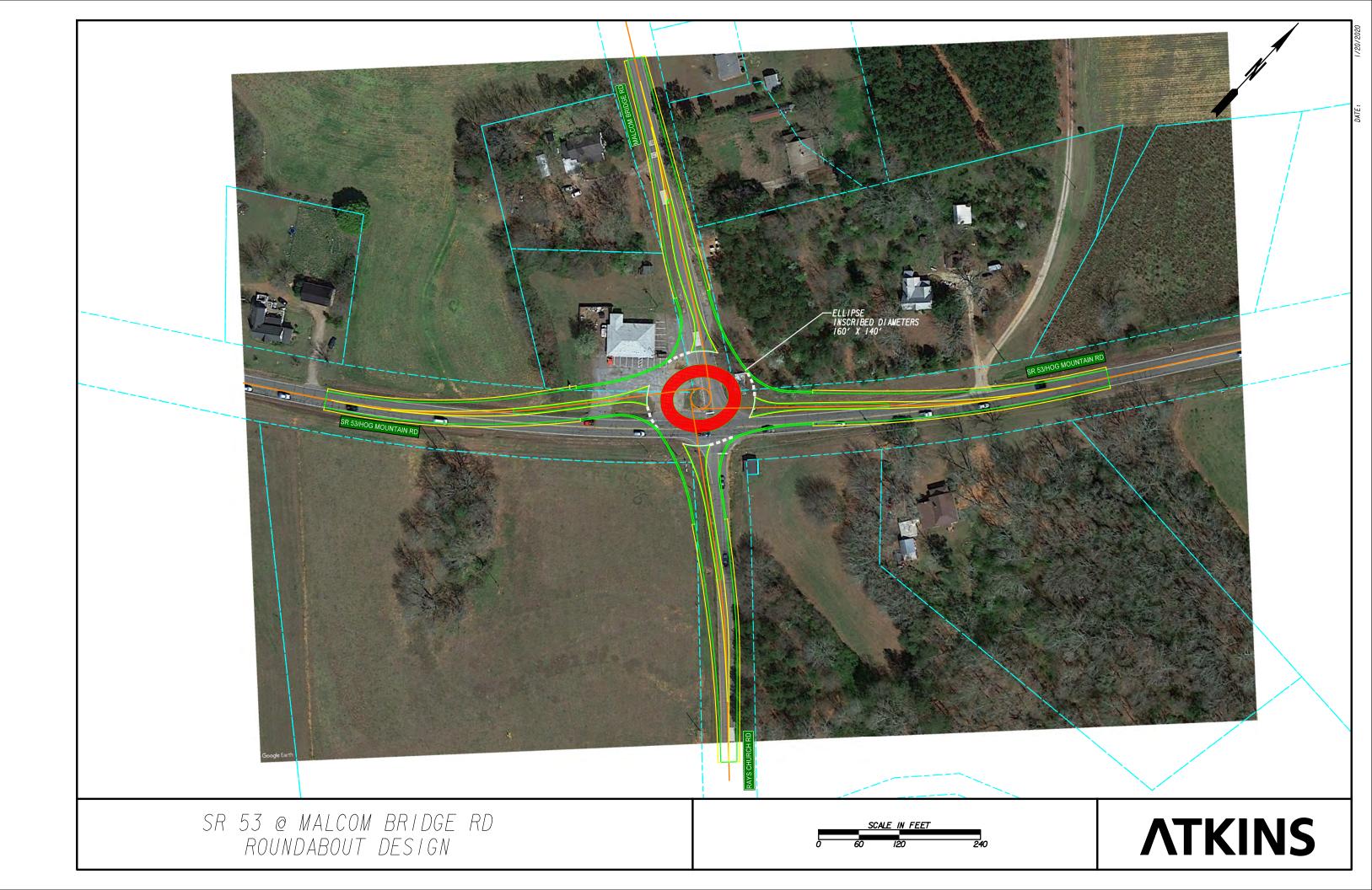
The utility pole is impacted in the proposed layout included in Appendix O.

Appendix N: Important Documents/Other Risks

Person	Date	Position	Email
Landon	August 15,	State Traffic	It appears that both locations have been transferred to the
Perry	2019	Operations Manager	safety section based on their screening results.
i city	2015	Asst. State	The locals have indicated a desire to contribute local
		Transporation	funding towards one / both of the roundabout
Radney	October 8,	Planning	projectswhen does your team need to know the funding
Simpson	2019	Administrator	amount?
Samuel	October 9,	State Safety	As to your question below, these project are within my
Harris	2019	Engineering Manager	program and will be funded by HSIP funds.
			We can provide PE and ROW for both projects. We can also
John	October		provide up to \$250,000 for CST on each project based on
Daniell	23, 2019	Oconee Chairman	acceleration.
			Following up on the below, after review by GDOT Traffic Operations, we have received high-level cost estimates and potential programming years for both of the subject projects which are shown below: SR 53 at Snows Mill Road: PE – \$800,000 FY 2021
			ROW - \$200,000 FY 2023
			UTL - \$250,000 FY 2024
			CST-\$2,000,000 FY 2024
			TOTAL – 3,250,000
			SR 53 at Malcolm Bridge Road/Rays Church Road: PE – \$800,000 FY 2021 ROW – \$600,000 FY 2023 UTL - \$250,000 FY 2024 CST- \$2,400,000 FY 2024 TOTAL - \$4,050,000
			Some additional notes:
			 -Federal funding would be used to cover costs outside of the local contribution. -Per Traffic Ops, the projected costs for the Malcolm Bridge intersection is slightly higher due to concerns about historic properties in the northeast and southeast quadrants. -PE work could also start prior to FY 2021 if there is a 100%
Thomas	November		local contribution to the PE Phases (which you did mention
Caiafa	8, 2019	Branch Chief	below).
John	November		We believe we can complete design and ROW in current FY.
Daniell	8, 2019	Oconee Chairman	Can construction be moved to FY 21?

0	,		SR 53 at Malcom Bridge Road/Rays Church Road
			It is not feasible to shift Construction to FY 2021. Even if we
			were to fast track this project for environmental and
			preliminary design, Right of Way would still need a
			minimum of 12 months to complete acquisition. We have
			not yet identify utility and environmental impacts that
			could affect fast tracking the project. From my view at this
			stage of the project I cannot see us committing to anything
		T (() O ()	earlier than FY 2023 for construction, keep in mind we are
Stenley	November	Traffic Operations	almost halfway through FY 2020 and we have not started
Mack	9, 2019	Program Manager	Concept development yet.
			We have a design consultant ready to go for design. Our
			plan was to commission the design with county funds.
			Concept design and completed plans to be approved by
			appropriate GDOT staff. We have an cooperative land
			owner and the county would transact the ROW purchase
			then transfer to GDOT. I understand the SR53@ Malcom
			Bridge/Ray's Church maybe a little more complicated but
			our goal is to avoid the NE and SE quadrants.
			What about the following:
			SR 53 at Snows Mill Road:
			PE – Oconee County completed by March of 2020
			ROW – Oconee County competed by March 2020
			UTL - \$250,000 FY 2020
			CST-\$2,000,000 FY 2021
			TOTAL – 2,250,000
			SR 53 at Malcolm Bridge Road/Rays Church Road:
			PE – Oconee County completed by September 2020
			ROW – Oconee County completed September 2020
			UTL - \$250,000 FY 2021
John	November		CST- \$2,400,000 FY 2022
Daniell	12, 2019	Oconee Chairman	TOTAL - \$2,650,000
			Thank you both for assisting Oconee County Chairman
			understand the process moving forwardbased on the
			callit is my understanding that for Snow Mill Rd the PE &
			RW phases would be funded with Loc funds - PE would shift
			to FY 20 - all the other phases can remain as noted on the
			attached PDF. The CST phase would be funded with Fed
			funds with State match as needed.
			rands with state match as needed.
		Asst. State	For Malcom Bridge project, the PE and RW phases would be
		Transporation	funded with local funds. CST phase would be Fed funded
Radney	December	Planning	(with state match as needed) project phases would be red funded
Simpson	3, 2019	Administrator	as noted on the attached PDF.
Simpson	5,2019	Auministrator	as noted on the attached PDF.


			SR 53 at Malcom Bridge Road/Rays Church Road
			As an FYI, we are currently doing an environmental
			screening at this location to confirm what can be done in
			terms of displacement. I just wanted to know if these
Samuel	December	State Safety	buildings have already been discussed with the property
Harris	10, 2019	Engineering Manager	owners.
			We hope to shift NW and SW to avoid both structures. The
			SE land owner is not friendly to ROW expansion. The more
John	December		we can shift to the SW land owner, the better for ROW
Daniell	10, 2019	Oconee Chairman	acquisition.



Appendix O: Proposed Conceptual Layout

See attached 11" x 17" sheet.

